精英家教网 > 高中数学 > 题目详情

【题目】选修4-4坐标系与参数方程选讲

在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线的平面直角坐标方程和直线的普通方程:

(2)若成等比数列,求实数的值.

【答案】1 ;2

【解析】

试题得:,即可求得曲线的直角坐标方程,消去参数得直线的普通方程

将直线的参数方程代入到曲线的直角坐标方程中可得关于的二次方程,由成等比数列,可得,变形后代入韦达定理可得关于的方程,解出即可得到答案

解析:(1)得:

∴曲线C的直角坐标方程为:(a > 0)

消去参数t得直线l的普通方程为

(2)解:将直线l的参数方程代入中得:

6

MN两点对应的参数分别为t1t2,则有 8

,∴

解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知椭圆 的长轴为,过点的直线轴垂直,椭圆上一点与椭圆的长轴的两个端点构成的三角形的最大面积为2,且椭圆的离心率为.

(1)求椭圆的标准方程;

(2) 设是椭圆上异于 的任意一点,连接并延长交直线于点 点为的中点,试判断直线与椭圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间进行分组,绘制成如下频率分布直方图,规定不低于80(百分制)为优秀.

1)完成表格,并判断是否有90%以上的把握认为数学成绩优秀与教学改革有关

甲班

乙班

总计

大于等于80分的人数

小于80分的人数

总计

2)从乙班分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.:

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当前全世界人民越来越关注环境保护问题,某地某监测站点于20188月起连续n天监测空气质量指数(AQI),数据统计如下表:

空气质量指数(μg/m3

[050]

50100]

100150]

150200]

200250]

空气质量等级

轻度污染

中度污染

重度污染

天数

20

40

m

10

5

1)根据所给统计表和频率分布直方图中的信息求出nm的值,并完成频率分布直方图;

2)由频率分布直方图,求该组数据的平均数与中位数;

3)在空气质量指数分别为[050]和(50100]的监测数据中,用分层抽样的方法抽取6天,从中任意选取2天,求事件A“两天空气质量等级都为良发生的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形,GACBD交点,面平面ABCD.

1)证明:平面BDE

2)若为等边三角形,,三棱锥的体积为,求四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程有三个不同解,则实数的取值范围是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于任意x[14],不等式0≤ax2+bx+4a≤4x恒成立,|a|+|a+b+25|的范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 所在平面互相垂直,且 分别为ACDCAD的中点

1)求证: 平面BCG

2)求三棱锥D-BCG的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标平面中,已知点,…,,其中是正整数,对平面上任一点,记关于点的对称点,关于点的对称点,…,关于点的对称点.

1)求向量的坐标;

2)当点在曲线上移动时,点的轨迹是函数的图像,其中是以3为周期的周期函数,且当时,.求以曲线为图像的函数在上的解析式;

3)对任意偶数,用表示向量的坐标.

查看答案和解析>>

同步练习册答案