精英家教网 > 高中数学 > 题目详情

【题目】【湖南省2017届高三长郡中学、衡阳八中等十三校重点中学第一次联考数学(理)】

已知函数.

(1)当时,试求函数图像过点的切线方程;

(2)当时,若关于的方程有唯一实数解,试求实数的取值范围;

(3)若函数有两个极值点,且不等式恒成立,试求实数的取值范围.

【答案】(1);(2);(3).

【解析】试题分析:对于(1),先利用导数求出切线的斜率,再写出点斜式方程;

对于(2),方程可化为:,构造,通过研究的单调性即可求出的范围.

对于(3),首先根据有两个极值点,利用导数求出的取值范围以及极值点;将恒成立转化为恒成立,然后构建函数求出的最小值即可.

试题解析:

(1)当时,有.

,∴

∴过点的切线方程为:

.

(2)当时,有,其定义域为:

从而方程可化为:

,则

.

上单调递增,在上单调递减,

又当时,;当时,.

∵关于的方程有唯一实数解,

∴实数的取值范围是:.

(3)∵的定义域为:.

.

又∵函数有两个极值点

有两个不等实数根

,且

从而.

由不等式恒成立恒成立,

,当时恒成立,

∴函数上单调递减,∴

故实数的取值范围是:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy上取两个定点 再取两个动点,且

(Ⅰ)求直线交点M的轨迹C的方程;

(Ⅱ)过的直线与轨迹C交于P,Q,过P轴且与轨迹C交于另一点NF为轨迹C的右焦点,若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,令函数,求函数上的极大值、极小值;

(Ⅱ)若函数上恒为单调递增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为2.10元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元.已知甲、乙两用户该月用水量分别为5x,3x吨.

(1)y关于x的函数;

(2)如甲、乙两户该月共交水费40.8元,分别求出甲、乙两户该月的用水量和水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知).

(Ⅰ)求证:

(Ⅱ)若不等式时恒成立,求最小正整数,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

某公司经销某产品,第的销售价格为为常数)(元件),第天的销售量为(件),且公司在第天该产品的销售收入为元.

(1)求该公司在第天该产品的销售收入是多少?

(2)天中该公司在哪一天该产品的销售收入最大?最大收入为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,用KA1A2三类不同的元件连接成一个系统.当K正常工作且A1A2至少有一个正常工作时,系统正常工作,已知KA1A2正常工作的概率依次是0.90.80.8,则系统正常工作的概率为( )

A. 0.960 B. 0.864 C. 0.720 D. 0.576

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数满足,实数满足,则的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,对任意实数,都有.

(1)若 ,且,求 的值;

(2)若为常数,函数是奇函数,

①验证函数满足题中的条件;

②若函数求函数的零点个数.

查看答案和解析>>

同步练习册答案