精英家教网 > 高中数学 > 题目详情
18.已知两等差数列{an}和{bn},前n项和分别为Sn,Tn,若$\frac{{a}_{n}}{{b}_{n}}=\frac{4n+2}{2n-5}$,则$\frac{{S}_{19}}{{T}_{19}}$=$\frac{14}{5}$.

分析 由等差数列的通项公式和前n项和公式推导出$\frac{{S}_{19}}{{T}_{19}}$=$\frac{{a}_{10}}{{b}_{10}}$,由此能求出结果.

解答 解:∵两等差数列{an}和{bn},前n项和分别为Sn,Tn,$\frac{{a}_{n}}{{b}_{n}}=\frac{4n+2}{2n-5}$,
∴$\frac{{S}_{19}}{{T}_{19}}$=$\frac{\frac{19}{2}({a}_{1}+{a}_{19})}{\frac{19}{2}({b}_{1}+{b}_{19})}$=$\frac{{a}_{10}}{{b}_{10}}$=$\frac{4×10+2}{2×10-5}$=$\frac{14}{5}$.
故答案为:$\frac{14}{5}$.

点评 本题考查两个等差数列的前19项和的比值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ax3+bx2+(c-3a-2b)x+d(a>0)的图象如图.
(Ⅰ)求c,d的值;
(Ⅱ)若函数f(x)在x=2处的切线方程为3x+y-11=0,求函数f(x)的解析式;
(Ⅲ)若x0=5,方程f(x)=8a有三个不同的根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图(1),已知A,B,C.P四点共面,PC上AC,AB=BC,D,F分别为AC,PC的中点,DE⊥AP于E.把平面四边形ABCP沿AC折成直二面角,如图(2).
(1)求i正:AP⊥平面BDE;
(2)求证:平面BDF⊥平面BDE;
(3)延长AB至H,使得AB=BH,如图(3).在AP上是否存在点Q,使得平面CHQ∥平面BDE?若存在,指出Q点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用更相减损术得111与148的最大公约数为(  )
A.1B.17C.23D.37

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点M是圆x2+y2-2x-6y+9=0上的动点,点N是圆x2+y2-14x-10y+70=0上的动点,点P在x轴上,则|PM|+|PN|的最小值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,三棱锥P-ABC中,△PAB是正三角形,E是AB的中点,AB⊥BC,平面PAB⊥平面ABC.若AB=2,BC=$\sqrt{2}$,则点A到平面PEC的距离是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知,命题p:?x∈R,x2+ax+2≥0,命题q:?x∈[-3,-$\frac{1}{2}$],x2-ax+1=0.
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题q为真命题,求实数a的取值范围;
(3)若命题“p∨q”为真命题,且命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤-2}\\{\frac{x}{2}.x>-2}\end{array}\right.$的定义域为R,值域为[-4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求适合下列条件的椭圆的标准方程:
(1)a=4,b=1,焦点在x轴上;
(2)a=4,c=$\sqrt{15}$,焦点在y轴上;
(3)a+b=10,c=2$\sqrt{5}$.

查看答案和解析>>

同步练习册答案