精英家教网 > 高中数学 > 题目详情

已知等比数列{an}中,a2=32,a8,an+1<an.
(1)求数列{an}的通项公式;
(2)设Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相应的n值.

(1)27-n(2)n=6或n=7时,Tn最大,其最大值是T6=T7=21

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列满足:,其中为实数,为正整数.
(1)对任意实数,求证:不成等比数列;
(2)试判断数列是否为等比数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校餐厅每天供应500名学生用餐,每星期一有A, B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有改选A菜。用分别表示第个星期选A的人数和选B的人数.
⑴试用表示,判断数列是否成等比数列并说明理由;
⑵若第一个星期一选A种菜的有200人,那么第10个星期一选A种菜的大约有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我们把一系列向量排成一列,称为向量列,记作,又设,假设向量列满足:
(1)证明数列是等比数列;
(2)设表示向量间的夹角,若,记的前项和为,求
(3)设上不恒为零的函数,且对任意的,都有,若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列前n项和为,首项为,且等差数列。
(1)求数列的通项公式;
(2)若,设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在各项均为正数的等比数列{an}中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log3an,求数列{anbn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列{an}中,a2a3=32,a5=32.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求S1+2S2+…+nSn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和满足
(1)写出数列的前3项
(2)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

称满足以下两个条件的有穷数列阶“期待数列”:
;②.
(1)若数列的通项公式是
试判断数列是否为2014阶“期待数列”,并说明理由;
(2)若等比数列阶“期待数列”,求公比q及的通项公式;
(3)若一个等差数列既是阶“期待数列”又是递增数列,求该数列的通项公式;

查看答案和解析>>

同步练习册答案