精英家教网 > 高中数学 > 题目详情
10.设等差数列{an}的前n项的和为Sn,且满足S2014>0,S2015<0,对任意正整数n,都有|an|≥|ak|,则k的值为1008.

分析 由等差数列的求和公式和性质可得a1007>0,a1008<0,且|a1007|>|a1008|,由题意易得结论.

解答 解:由等差数列的求和公式和性质可得S2014=$\frac{2014{(a}_{1}+{a}_{2014})}{2}$=1007(a1007+a1008)>0,
∴a1007+a1008>0
同理由S2015<0可得2015a1008<0,可得a1008<0,
∴a1007>0,a1008<0,且|a1007|>|a1008|
∵对任意正整数n,都有|an|≥|ak|,
∴k的值为1008,
故答案为:1008.

点评 本题考查等差数列的性质和求和公式,得出数列的最小项是解决问题的关键,属基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.$\root{6}{(a-b)^{6}}$(a<b)=b-a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x+\frac{1}{2})$为奇函数,g(x)=f(x)+1,若${a_n}=g(\frac{n}{2016})$,则数列的前2015项之和为(  )
A.2016B.2015C.2014D.2013

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),曲线C1:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)设l与C1相交于A,B两点,求|AB|;
(2)若把曲线C1上各点的横坐标压缩为原来的$\frac{1}{2}$,纵坐标压缩为原来的$\frac{{\sqrt{3}}}{2}$得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=lnx-|x-2|的零点的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a,b都是正实数,且满足log9(9a+b)=log3$\sqrt{ab}$,则3a+b的最小值为12+6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图在正方体ABCD-A1B1C1D1中,
(1)求证:平面AA1C1C⊥平面A1BD
(2)求直线A1B与平面A1B1CD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(理)下列四个命题中真命题的序号是①③.
①若存在实数x,y,使$\overrightarrow p=x\overrightarrow a+y\overrightarrow b$,则$\overrightarrow P$与$\overrightarrow a,\overrightarrow b$共面;
②若$\overrightarrow P$与$\overrightarrow a,\overrightarrow b$共面,则存在实数x,y,使$\overrightarrow p=x\overrightarrow a+y\overrightarrow b$;
③若存在实数x,y,使$\overrightarrow{MP}=x\overrightarrow{MA}+y\overrightarrow{MB}$,则P,M,A,B共面;
④若P,M,A,B共面,则存在实数x,y,使$\overrightarrow{MP}=x\overrightarrow{MA}+y\overrightarrow{MB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线m过双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的左焦点F1,且与该双曲线的左支交于A,B两点,若|AB|=2,双曲线的右焦点为F2,则△ABF2的周长为(  )
A.6B.8C.12D.20

查看答案和解析>>

同步练习册答案