分析 由等差数列的求和公式和性质可得a1007>0,a1008<0,且|a1007|>|a1008|,由题意易得结论.
解答 解:由等差数列的求和公式和性质可得S2014=$\frac{2014{(a}_{1}+{a}_{2014})}{2}$=1007(a1007+a1008)>0,
∴a1007+a1008>0
同理由S2015<0可得2015a1008<0,可得a1008<0,
∴a1007>0,a1008<0,且|a1007|>|a1008|
∵对任意正整数n,都有|an|≥|ak|,
∴k的值为1008,
故答案为:1008.
点评 本题考查等差数列的性质和求和公式,得出数列的最小项是解决问题的关键,属基础题
科目:高中数学 来源: 题型:选择题
A. | 2016 | B. | 2015 | C. | 2014 | D. | 2013 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6 | B. | 8 | C. | 12 | D. | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com