精英家教网 > 高中数学 > 题目详情
17.在(2-x)14(x∈R,x≠0)的展开式中,已知第2r项与第r+1项((r≠1)的二项式系数相等.
(Ⅰ)求r的值;
(Ⅱ)若该展开式的第r项的值与倒数第r项的值相等,求x的值.

分析 (Ⅰ)由题意利用二项式系数的性质求得r的值.
(Ⅱ)利用通项公式求得T5=${C}_{14}^{4}$•210•(-x)4,倒数第5项,即T11=${C}_{14}^{10}$•24•(-x)10,根据这两项相等,解得x的值.

解答 解:(Ⅰ)由题意知,2r-1=r+1-1或2r-1+r=14,解得r=1(舍去) 或r=5,
故r的值为5.
(Ⅱ)由题意可得Tr=${C}_{14}^{r-1}$•215-r•(-x)r-1,当r=5时,T5=${C}_{14}^{4}$•210•(-x)4
倒数第5项,即T11=${C}_{14}^{10}$•24•(-x)10
由题意  ${C}_{14}^{4}$•210•(-x)4=${C}_{14}^{10}$•24•(-x)10,解得x=±2.

点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,∠BAC=45°,∠ABC=60°,O为三角形的外心,以线段OB,OC为邻边作平行四边形,第四个顶点为D,再以OA,OD为邻边作平行四边形,它的第四个顶点为H.
(1)设向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示$\overrightarrow{OH}$;
(2)用向量法证明:AH⊥BC;
(3)若△ABC的外接圆半径为$\sqrt{2}$,求OH的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图程序框图运行后,如果输出的函数值在区间[-2,$\frac{1}{2}$]内,则输入的实数x的取值范围是(-∞,-1]∪[$\frac{1}{4}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在区间[-1,3]上任取一个实数,则该数是不等式x2≤4的解的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.用0,3,4,5,6这五个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数共有(  )
A.28B.30C.36D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示,分别以A,B,C为圆心,在△ABC内作半径为2的扇形(图中的阴影部分),在△ABC内任取一点P,如果点P落在阴影部分的概率为$\frac{1}{4}$,那么△ABC的面积是8π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若a1=2,an+1=an-2,(n∈N*),则an=4-2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图1,在直角梯形ABCD中,AB∥CD,∠DAB=90°,点E、F分别在CD、AB上,且EF⊥CD,BE⊥BC,BC=1,CE=2.现将矩形ADEF沿EF折起,使平面ADEF与平面EFBC垂直(如图2).
(Ⅰ)求证:CD∥面ABF;
(Ⅱ)当AF的长为何值时,二面角A-BC-F的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在平行六面体ABCD-A1B1C1D1中,AD=1,CD=2,A1D⊥平面ABCD,AA1与底面ANCD所成角为θ(0<θ<$\frac{π}{2}$),∠ADC=2θ
(1)求证:平面六面体ABCD-A1B1C1D1的体积V=4sin2θ,并求V的取值范围;
(2)若θ=45°,求二面角A-A1C-D所成角的大小.

查看答案和解析>>

同步练习册答案