精英家教网 > 高中数学 > 题目详情
设点O是△ABC的外心,AB=13,AC=12,则=   
【答案】分析:作出边AB,AC的垂线,利用向量的运算将表示,利用向量的数量积的几何意义将向量的数量积表示成一个向量与另个向量的投影的乘积.
解答:解:过O作OS⊥AB,OT⊥AC垂足分别为S,T 则S,T分别是AB,AC的中点,==
=-||||+||•||=-13×+12×
=
故答案为:
点评:本题考查向量的运算法则、向量数量积的几何意义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点O是△ABC的外心,AB=13,AC=12,则
BC
AO
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设点O是△ABC的外心,AB=c,AC=b,(b-1)2+c2=1,则
BC
AO
的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设点O是△ABC的外心,AB=13,AC=12,则·=           ..

查看答案和解析>>

科目:高中数学 来源: 题型:

设点O是△ABC的外心,AB=13,AC=12,则·=          

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高考数学模拟试卷(解析版) 题型:解答题

设点O是△ABC的外心,AB=13,AC=12,则=   

查看答案和解析>>

同步练习册答案