精英家教网 > 高中数学 > 题目详情
如图,一圆形纸片的圆心为O,F为圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.圆
A

试题分析:由题意知,CD是线段MF的垂直平分线.∴|MP|=|PF|,∴|PF|+|PO|=|PM|+|PO|=|MO|(定值),又显然|MO|>|FO|,∴根据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别为,点为短轴的一个端点,.
(1)求椭圆的方程;
(2)如图,过右焦点,且斜率为的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为.
求证: 为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.
(1)求椭圆的标准方程;
(2)已知过点的直线与椭圆交于两点.
(ⅰ)若直线垂直于轴,求的大小;
(ⅱ)若直线轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆)的左、右焦点为,右顶点为,上顶点为.已知
(1)求椭圆的离心率;
(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•陕西)设椭圆C:过点(0,4),离心率为
(Ⅰ)求C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2011•浙江)设F1,F2分别为椭圆+y2=1的焦点,点A,B在椭圆上,若=5;则点A的坐标是 _________ 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆+=1(a>b>0)的离心率为,则双曲线-=1的渐近线方程为(  )
A.y=±x     B.y=±2x
C.y=±4x      D.y=±x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C的方程为(m>0),如果直线y=x与椭圆的一个交点M在x轴上的射影恰好是椭圆的右焦点F,则m的值为(  )
A.2 B.2
C.8 D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点F1、F2分别是椭圆的左、右焦点,A、B是以O(O
为坐标原点)为圆心、|OF1|为半径的圆与该椭圆左半部分的两个交点,且△F2AB是正三角形,则此椭圆的离心率为(   )
A.       B.        C.        D.

查看答案和解析>>

同步练习册答案