【题目】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D.有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明;
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
【答案】(1)0(2)偶函数(3){x|-≤x<-或-<x<3或3<x≤5}.
【解析】
(1)利用赋值法求结果,(2)利用赋值法,结合奇偶性定义进行证明,(3)根据赋值法得f(16×4)=3,再利用单调性化简不等式为0<|(3x+1)(2x-6)|≤64,最后解不等式得结果.
(1)令x1=x2=1,
有f(1×1)=f(1)+f(1),解得f(1)=0.
(2)f(x)为偶函数,证明如下:
令x1=x2=-1,
有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.
令x1=-1,x2=x,有f(-x)=f(-1)+f(x),
∴f(-x)=f(x).∴f(x)为偶函数.
(3)f(4×4)=f(4)+f(4)=2,
f(16×4)=f(16)+f(4)=3.
由f(3x+1)+f(2x-6)≤3,
变形为f[(3x+1)(2x-6)]≤f(64).(*)
∵f(x)为偶函数,∴f(-x)=f(x)=f(|x|).
∴不等式(*)等价于f[|(3x+1)(2x-6)|]≤f(64).
又∵f(x)在(0,+∞)上是增函数,
∴|(3x+1)(2x-6)|≤64,且(3x+1)(2x-6)≠0.
解得-≤x<-或-<x<3或3<x≤5.
∴x的取值范围是{x|-≤x<-或-<x<3或3<x≤5}.
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的右焦点为,且椭圆上一点到其两焦点,的距离之和为.
(1)求椭圆的标准方程;
(2)设直线:()与椭圆交于不同两点,,且,若点满足,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,OA,OB是两条互相垂直的笔直公路,半径OA=2km的扇形AOB是某地的一名胜古迹区域.当地政府为了缓解该古迹周围的交通压力,欲在圆弧AB上新增一个入口P(点P不与A,B重合),并新建两条都与圆弧AB相切的笔直公路MB,MN,切点分别是B,P.当新建的两条公路总长最小时,投资费用最低.设∠POA=,公路MB,MN的总长为.
(1)求关于的函数关系式,并写出函数的定义域;
(2)当为何值时,投资费用最低?并求出的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>1,函数f(x)=,g(x)=x++4, 若x1∈[1,3],x2∈[0,3],使得f(x1)=g(x2)成立,则a的取值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,
x | ﹣1 | 0 | 2 | 4 | 5 |
f(x) | 1 | 2 | 1.5 | 2 | 1 |
下列关于函数f(x)的命题:
①函数f(x)的值域为[1,2];
②如果当x∈[﹣1,t]时,f(x)的最大值为2,那么t的最大值为4;
③函数f(x)在[0,2]上是减函数;
④当1<a<2时,函数y=f(x)﹣a最多有4个零点.
其中正确命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有五个命题:① 函数的最小正周期是;② 终边在轴上的角的集合是;③ 在同一坐标系中,函数的图象和函数的图象有三个公共点;④ 把函数;;其中真命题的序号是( )
A. ①③ B. ①④ C. ②③ D. ③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com