精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)的定义域D={x|x≠0},且满足对于任意x1x2D.f(x1·x2)=f(x1)+f(x2).

(1)f(1)的值;

(2)判断f(x)的奇偶性并证明;

(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)(0,+∞)上是增函数,求x的取值范围.

【答案】(1)0(2)偶函数(3){x|-x<-或-<x<33<x≤5}.

【解析】

(1)利用赋值法求结果,(2)利用赋值法,结合奇偶性定义进行证明,(3)根据赋值法得f(16×4)=3,再利用单调性化简不等式为0<|(3x+1)(2x-6)|≤64,最后解不等式得结果.

(1)x1x2=1,

f(1×1)=f(1)+f(1),解得f(1)=0.

(2)f(x)为偶函数,证明如下:

x1x2=-1,

f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.

x1=-1,x2x,有f(-x)=f(-1)+f(x),

f(-x)=f(x).f(x)为偶函数.

(3)f(4×4)=f(4)+f(4)=2,

f(16×4)=f(16)+f(4)=3.

f(3x+1)+f(2x-6)≤3,

变形为f[(3x+1)(2x-6)]≤f(64).(*)

f(x)为偶函数,∴f(-x)=f(x)=f(|x|).

∴不等式(*)等价于f[|(3x+1)(2x-6)|]≤f(64).

又∵f(x)(0,+∞)上是增函数,

|(3x+1)(2x-6)|≤64,且(3x+1)(2x-6)≠0.

解得-x<-或-<x<33<x≤5.

x的取值范围是{x|-x<-或-<x<33<x≤5}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为且椭圆上一点到其两焦点的距离之和为

1求椭圆的标准方程

2设直线与椭圆交于不同两点若点满足的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求曲线在点处的切线方程;

2)当时,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,OA,OB是两条互相垂直的笔直公路,半径OA=2km的扇形AOB是某地的一名胜古迹区域.当地政府为了缓解该古迹周围的交通压力,欲在圆弧AB上新增一个入口P(点P不与A,B重合),并新建两条都与圆弧AB相切的笔直公路MB,MN,切点分别是B,P.当新建的两条公路总长最小时,投资费用最低.设∠POA=,公路MB,MN的总长为

(1)求关于的函数关系式并写出函数的定义域

(2)当为何值时投资费用最低并求出的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>1,函数f(x)=,g(x)=x+4, x1[1,3],x2[0,3],使得f(x1)=g(x2)成立,则a的取值为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线经过点,求a的值;

(2)若内存在极值,求a的取值范围;

(3)当时,恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,

x

﹣1

0

2

4

5

f(x)

1

2

1.5

2

1

下列关于函数f(x)的命题:
①函数f(x)的值域为[1,2];
②如果当x∈[﹣1,t]时,f(x)的最大值为2,那么t的最大值为4;
③函数f(x)在[0,2]上是减函数;
④当1<a<2时,函数y=f(x)﹣a最多有4个零点.
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且 ,S20=17,则S30为(
A.15
B.20
C.25
D.30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有五个命题:① 函数的最小正周期是;② 终边在轴上的角的集合是;③ 在同一坐标系中,函数的图象和函数的图象有三个公共点;④ 把函数;;其中真命题的序号是( )

A. ①③ B. ①④ C. ②③ D. ③④

查看答案和解析>>

同步练习册答案