精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.
(1)求椭圆的方程;
(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;
(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
(1);(2);(3)存在点满足题意,点的坐标为的面积为

试题分析:(1)由题目给出的条件直接列关于的方程组求解的值,则椭圆方程可求;(2)由椭圆方程求出椭圆上下顶点的坐标,设出椭圆上的动点,由直线方程的两点式写出直线的方程,取后得到的长度,结合点在椭圆上整体化简运算可证出为定值;(3)假设存在点,使得直线与圆,相交于不同的两点,且的面积最大,由点在椭圆上得到关于的关系式,由点到直线的距离公式求出原点到直线的距离,由圆中的半径,半弦长和弦心距之间的关系求出弦长,写出的面积后利用基本不等式求面积的最大值,利用不等式中等号成立的条件得到关于的另一关系式,联立后可求解的坐标.
试题解析:
(1)由题意:,解得:
所以椭圆
(2) 由(1)可知,设,
直线:,令,得;
直线:,令,得;
,
,所以,
所以
(3)假设存在点满足题意,则,即
设圆心到直线的距离为,则,且
所以
所以
因为,所以,所以
所以
当且仅当,即时,取得最大值
,解得
所以存在点满足题意,点的坐标为

此时的面积为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆E:=1()过点M(2,), N(,1),为坐标原点
(I)求椭圆E的方程;
(II)是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=.

(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆直线与圆相切,且交椭圆两点,是椭圆的半焦距,
(Ⅰ)求的值;
(Ⅱ)O为坐标原点,若求椭圆的方程;
(Ⅲ) 在(Ⅱ)的条件下,设椭圆的左右顶点分别为A,B,动点,直线AS,BS与直线分别交于M,N两点,求线段MN的长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线的焦点为,准线为,以为圆心的圆相切于点的纵坐标为是圆轴除外的另一个交点.
(I)求抛物线与圆的方程;
( II)已知直线交于两点,交于点,且, 求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左右顶点分别为,离心率.过该椭圆上任一点轴,垂足为,点的延长线上,且
(1)求椭圆的方程;
(2)求动点的轨迹的方程;
(3)设直线点不同于)与直线交于点为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个顶点与两个焦点构成等边三角形,则椭圆的离心率(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案