【题目】已知项数为的数列满足如下条件:①;②若数列满足其中则称为的“伴随数列”.
(I)数列是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;
(II)若为的“伴随数列”,证明:;
(III)已知数列存在“伴随数列”且求的最大值.
科目:高中数学 来源: 题型:
【题目】如图,点为正方形边上异于点,的动点,将沿翻折成,在翻折过程中,下列说法正确的是( )
A.存在点和某一翻折位置,使得
B.存在点和某一翻折位置,使得平面
C.存在点和某一翻折位置,使得直线与平面所成的角为45°
D.存在点和某一翻折位置,使得二面角的大小为60°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数x∈R,其中a,b∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)存在极值点x0,且f(x1)= f(x0),其中x1≠x0,求证:x1+2x0=3;
(Ⅲ)设a>0,函数g(x)= |f(x)|,求证:g(x)在区间[0,2]上的最大值不小于.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2|x+1|+|x-2|.
(1)求f(x)的最小值m;
(2)若a,b,c均为正实数,且满足a+b+c=m,求证:++≥3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建极坐标系,直线的极坐标方程为
(Ⅰ)求的极坐标方程;
(Ⅱ)射线与圆C的交点为与直线的交点为,求的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(0<p<8)的焦点为F点Q是抛物线C上的一点,且点Q的纵坐标为4,点Q到焦点的距离为5.
(1)求抛物线C的方程;
(2)设直线l不经过Q点且与抛物线交于A,B两点,QA,QB的斜率分别为K1,K2,若K1K2=﹣2,求证:直线AB过定点,并求出此定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的各项均为正数,其前n项的积为,记,.
(1)若数列为等比数列,数列为等差数列,求数列的公比.
(2)若,,且
①求数列的通项公式.
②记,那么数列中是否存在两项,(s,t均为正偶数,且),使得数列,,,成等差数列?若存在,求s,t的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现在进入“互联网+”时代,大学生小张自己开了一家玩具店,他通过“互联网+”销售某种玩具,经过一段时间对一种玩具的销售情况进行统计,得5数据如下:
假定玩具的销售量(百个)与玩具的销售价价格(元)之间存在相关关系:
销售量(百个) | 2 | 3 | 4 | 5 | 6 | 8 |
单个玩具的销售价(元) | 5.5 | 4.3 | 3.9 | 3.8 | 3.7 | 3.6 |
根据以上数据,小张分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.
(1)以为解释变量,为预报变量,作出散点图;
(2)分别计算模型甲与模型乙的残差平方和及,并通过比较,大小,判断哪个模型拟后效果更好.
(3)若—个玩具进价0.5元,依据(2)中拟合效果好的模型判断该玩具店有无亏损的可能?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三峡大坝专用公路沿途山色秀美,风景怡人.为确保安全,全程限速为80公里/小时.为了解汽车实际通行情况,经过监测发现某时段200辆汽车通过这段公路的车速均在[50,90](公里/小时)内,根据监测结果得到如下组距为10的频率分布折线图:
(1)请根据频率分布折线图,将颊率分布直方图补充完整(用阴影部分表示);
(2)求这200辆汽车在该路段超速的车辆数以及在该路段的平均速度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com