精英家教网 > 高中数学 > 题目详情

【题目】在三棱柱中,侧面为矩形, 的中点, 交于点 侧面.

(1)证明:

(2)若,求直线与平面所成角的正弦值.

【答案】(1)证明过程详见解析;(2.

【解析】试题分析:

(1)利用题意首先证得: 平面结合线面垂直的定义有: .

(2)建立空间直角坐标系,由空间坐标系求解直线与平面所成角的正弦值为.

试题解析:

证明:(1)由题意可知,在中,

中,

又因为 ,所以

所以

所以

侧面,且侧面,∴

交于点,所以平面

又因为平面,所以.

解:(2)如图所示,以为原点,分别以 所在的直线为轴, 轴, 轴,建立空间直角坐标系,

.

又因为,所以

所以

设平面的法向量为

则由,得

,则 是平面的一个法向量.

设直线与平面所成的角为

故直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数), .

(1)若,且直线分别与函数的图象交于,求两点间的最短距离;

(2)若时,函数的图象恒在的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,满足前n项和.

(I)证明:

(Ⅱ)证明:

(Ⅲ)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)的最小正周期和单调递增区间;

(2)已知三边长,且的面积.求角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的对称轴为坐标轴,离心率为,且一个焦点坐标为

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,以线段为邻边作平行四边形,其中点在椭圆上, 为坐标原点,求点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A,B分别在射线CM,CN(不含端点C)上运动,∠MCN= ,在△ABC中,角A,B,C所对的边分别是a,b,c
(1)若a,b,c依次成等差数列,且公差为2,求c的值:
(2)若c= ,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一鲜花店根据一个月(30天)某种鲜花的日销售量与销售天数统计如下,将日销售量落入各组区间频率视为概率.

日销售量(枝)

销售天数

3天

5天

13天

6天

3天

(1)试求这30天中日销售量低于100枝的概率;

(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 分别是的中点。

(Ⅰ)求证:

(Ⅱ)求直线和平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为 1, 的中点, 为线段上的动点,过点A、P、Q的平面截该正方体所得的截面记为.则下列命题正确的是__________(写出所有正确命题的编号).

①当时, 为四边形;②当时, 为等腰梯形;③当时, 为六边形;④当时, 的面积为.

查看答案和解析>>

同步练习册答案