精英家教网 > 高中数学 > 题目详情

【题目】下列说法中

①.对于命题:存在,则

②.命题“若,则函数上是增函数”的逆命题为假命题;

③.若为真命题,则均为真命题;

④.命题“若,则”的逆否命题是“若,则”.

错误的是________

【答案】③.

【解析】

①.特称命题的否定是全称命题,否定时要将存在量词改为全称量词,还要否定结论;

②.写出原命题的逆命题,再判断真假;

③.若为真命题,则必有一个为真命题,即可判断出;

④.利用逆否命题的含义即可得出.

解:∵:存在,是一个特称命题,由特称命题的否定是全称命题得,:任意,故①对;

命题,则函数上是增函数的逆命题为若函数上是增函数,则,是一个假命题,故②对;

为真命题,则至少有一个是真命题,可以有一个是假命题,故③错;

命题,则的逆否命题是,则,故④对;

故答案为:③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图给出的是某高校土木工程系大四年级55名学生期末考试专业成绩的频率分布折线图(连接频率分布直方图中各小长方形上端的中点),其中组距为10,且本次考试中最低分为50分,最高分为100分.根据图中所提供的信息,则下列结论中正确的是( )

A. 成绩是75分的人数有20人

B. 成绩是100分的人数比成绩是50分的人数多

C. 成绩落在70-90分的人数有35人

D. 成绩落在75-85分的人数有35人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点P为直线l上且不在x轴上的任意一点,直线与椭圆的交点分别为ABCDO为坐标原点.

1)求的周长;

2)设直线的斜线分别为,证明:

3)问直线l上是否存在点P,使得直线OAOBOCOD的斜率满足?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,函数定义于并取值于.(用数字作答)

1)若对于任意的成立,则这样的函数_______个;

2)若至少存在一个,使,则这样的函数____个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校共有学生2000人,其中男生1100人,女生900人为了调查该校学生每周平均课外阅读时间,采用分层抽样的方法收集该校100名学生每周平均课外阅读时间(单位:小时)

1)应抽查男生与女生各多少人?

2)如图,根据收集100人的样本数据,得到学生每周平均课外阅读时间的频率分布直方图,其中样本数据分组区间为.若在样本数据中有38名女学生平均每周课外阅读时间超过2小时,请完成每周平均课外阅读时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均课外阅读时间与性别有关”.

男生

女生

总计

每周平均课外阅读时间不超过2小时

每周平均课外阅读时间超过2小时

总计

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[5565),[6575),[7585),[8595]分组).

分组

频数

[5565

2

[6575

4

[7585

10

[8595]

4

合计

20

第一车间样本频数分布表

(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;

(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)

(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了检查生产产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.下表是甲流水线样本的频数分布表,下图是乙流水线样本的频率分布直方图.

甲流水线样本的频数分布表

质量指标值

频数

9

10

17

8

6

乙流水线样本的频率分布直方图

1)根据图形,估计乙流水线生产的产品的该项质量指标值的中位数;

2)设该企业生产一件合格品获利100元,生产一件不合格品亏损50元,若某个月内甲、乙两条流水线均生产了1000件产品,若将频率视为概率,则该企业本月的利润约为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们要计算由抛物线x轴以及直线所围成的区域的面积S,可用x轴上的分点1将区间分成n个小区间,在每个小区间上做一个小矩形,使矩形的左端点在抛物线上,这些矩形的高分别为,矩形的底边长都是,设所有这些矩形面积的总和为,为求S,只须令分割的份数n无限增大,就无限趋近于S,即.

1)求数列的通项公式,并求出S

2)利用相同的思想方法,探求由函数的图象,x轴以及直线所围成的区域的面积T.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在年的自主招生考试成绩中随机抽取名学生的笔试成绩,按成绩分组:第,第,第,第,第得到的频率分布直方图如图所示

分别求第组的频率;

若该校决定在第组中用分层抽样的方法抽取名学生进入第二轮面试,

已知学生甲和学生乙的成绩均在第组,求学生甲和学生乙同时进入第二轮面试的概率;

根据直方图试估计这名学生成绩的平均分.(同一组中的数据用改组区间的中间值代表)

查看答案和解析>>

同步练习册答案