【题目】已知双曲线的两个焦点为点在双曲线C上.
(1)求双曲线C的方程;
(2)已知Q(0,2),P为双曲线C上的动点,点M满足求动点M的轨迹方程;
(3)过点Q(0,2)的直线与双曲线C相交于不同的两点E、F,若求直线的方程.
【答案】(1);(2);(3),或.
【解析】
(1)依题意,由,得双曲线方程为,将点代入上式,能求出双曲线方程;
(2)设由题意为线段的中点,则,由此能得到动点的轨迹方程;
(3)设直线的方程为,代入双曲线的方程并整理,得.直线与双曲线相交于不同的两点、,所以,利用弦长公式与韦达定理解方程即可求出答案.
解:(1)依题意,由,
得双曲线方程为,
将点代入上式,得,
解得(舍去)或,
故所求双曲线方程为;
(2)设,
点满足,为线段的中点,
,,
把点代入双曲线方程为,
得动点的轨迹方程:;
(3)依题意,可设直线的方程为,代入双曲线的方程并整理,
得,
直线与双曲线相交于不同的两点、,
,
,
设,,
由韦达定理得,,
于是
,
,即,
化简得,
解得,或,
∴直线的方程为或,或。
科目:高中数学 来源: 题型:
【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列满足:,,.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论正确的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是椭圆C:上的一点,椭圆C的离心率与双曲线的离心率互为倒数,斜率为直线l交椭圆C于B,D两点,且A、B、D三点互不重合.
(1)求椭圆C的方程;
(2)若分别为直线AB,AD的斜率,求证:为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与抛物线:交于,两点,且的面积为16(为坐标原点).
(1)求的方程.
(2)直线经过的焦点且不与轴垂直,与交于,两点,若线段的垂直平分线与轴交于点,试问在轴上是否存在点,使为定值?若存在,求该定值及的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场对职工开展了安全知识竞赛的活动,将竞赛成绩按照,,… ,分成组,得到下面频率分布直方图.根据频率分布直方图.下列说法正确的是( )
①根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的众数估计值为;
②根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的中位数约为;
③若该商场有名职工,考试成绩在分以下的被解雇,则解雇的职工有人;
④若该商场有名职工,商场规定只有安全知识竞赛超过分(包括分)的人员才能成为安全科成员,则安全科成员有人.
A.①③B.②③C.②④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,是某海湾旅游区的一角,其中,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸和上分别修建观光长廊和AC,其中是宽长廊,造价是元/米,是窄长廊,造价是元/米,两段长廊的总造价为120万元,同时在线段上靠近点的三等分点处建一个观光平台,并建水上直线通道(平台大小忽略不计),水上通道的造价是元/米.
(1) 若规划在三角形区域内开发水上游乐项目,要求的面积最大,那么和的长度分别为多少米?
(2) 在(1)的条件下,建直线通道还需要多少钱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月25日-27日,北京召开第二届“一带一路”国际高峰论坛,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为 ( )
A. 198B. 268C. 306D. 378
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com