精英家教网 > 高中数学 > 题目详情

【题目】通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:

经计算的观测值. 参照附表,得到的正确结论是

附表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

0.050

0.010

0.001

3.841

6.635

10.828

A. 99%以上的把握认为爱好该项运动与性别有关

B. 99%以上的把握认为爱好该项运动与性别无关

C. 在犯错误的概率不超过0.1%的前提下,认为爱好该项运动与性别有关

D. 在犯错误的概率不超过0.1%的前提下,认为爱好该项运动与性别无关

【答案】A

【解析】分析:直接将观测值和临界值表比对,即可得结果.

详解因为

以上的把握认为爱好该项运动与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数
(1)求f(x)的单调区间及最大值;
(2)讨论关于x的方程|lnx|=f(x)根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0 , y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣ 时,切线MA的斜率为﹣

(1)求P的值;
(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点( )引直线l与曲线y= 相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于( )
A.
B.-
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正项数列{an}的前n项和Sn满足:Sn2
(1)求数列{an}的通项公式an
(2)令b ,数列{bn}的前n项和为Tn . 证明:对于任意n∈N* , 都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱ABCA1B1C1中,侧面AA1C1C是菱形,AC1A1C交于点O,点EAB的中点.

(1)求证:OE∥平面BCC1B1.

(2)AC1A1B,求证:AC1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的是__________

①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;

②在吸烟与患肺病这两个分类变量的独立性检验中,“有99%的把握认为吸烟与患肺病有关”的含义是“若某人吸烟,则他有99%的可能患肺病;”

③已知“”为真命题,则“”、“”、“”中至少有一个真命题;

④以模型去拟合一组数据时,为了求出回归方程,设,其变换后得到线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.

(1)证明AB⊥A1C;
(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

同步练习册答案