【题目】已知函数f(x)=cos2x+2sin2x+2sinx.
(Ⅰ)将函数f(2x)的图象向右平移 个单位得到函数g(x)的图象,若x∈[ , ],求函数g(x)的值域;
(Ⅱ)已知a,b,c分别为△ABC中角A,B,C的对边,且满足f(A)= +1,A∈(0, ),a=2 ,b=2,求△ABC的面积.
【答案】解:(Ⅰ)因为f(x)=cos2x+2sin2x+2sinx=cosx2﹣sinx2+2sin2x+2sinx=cosx2+sinx2+2sinx=1+2sinx,
即f(2x)=1+2sin2x,
∵函数f(2x)的图象向右平移 个单位得到函数g(x)的图象,
∴ ,∵ ,∴2x﹣ ∈[﹣ , ], ,∴g(x)∈[0,3],
所以函数g(x)的值域为[0,3].
(Ⅱ)解:∵ ,∴ ;因为 ,∴ .
又 , ,b=2,∴c=4.
所以,△ABC面积
【解析】(Ⅰ)利用三角恒等变换化简函数f(x)的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,利用正弦函数的定义域和值域,求得数g(x)的值域.(Ⅱ)先求得cosA的值,利用余弦定理求得c的值,可得△ABC的面积.
【考点精析】利用函数y=Asin(ωx+φ)的图象变换和余弦定理的定义对题目进行判断即可得到答案,需要熟知图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象;余弦定理:;;.
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点.
(1)求椭圆的方程;
(2)设椭圆与轴的非负半轴交于点,过点作互相垂直的两条直线,分别交椭圆于两点,连接,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:的离心率为,其右焦点到椭圆C外一点的距离为,不过原点O的直线l与椭圆C相交于A,B两点,且线段AB的长度为2.
1求椭圆C的方程;
2求面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 通项公式为 .
(Ⅰ)计算f(1),f(2),f(3)的值;
(Ⅱ)比较f(n)与1的大小,并用数学归纳法证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下茎叶图记录了甲、乙两组各四名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中经X表示。
(1)如果X=8,求乙组同学植树棵数的平均数和方差
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD中,底面为矩形,PA⊥底面ABCD,PA=BC=1,AB=2,M为PC中点.
(Ⅰ)在图中作出平面ADM与PB的交点N,并指出点N所在位置(不要求给出理由);
(Ⅱ)在线段CD上是否存在一点E,使得直线AE与平面ADM所成角的正弦值为 ,若存在,请说明点E的位置;若不存在,请说明理由;
(Ⅲ)求二面角A﹣MD﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的圆心坐标且与线y=3x+4相切,
(1)求圆C的方程;
(2)设直线与圆C交于M,N两点,那么以MN为直径的圆能否经过原点,若能,请求出直线MN的方程;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]
已知函数f(x)=|x﹣m|﹣1.
(1)若不等式f(x)≤2的解集为{x|﹣1≤x≤5},求实数m的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥t﹣2对一切实数x恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:(a>0,b>0)的短轴长为2 , 且离心率e= .
(Ⅰ)求椭圆C的方程;
(Ⅱ)设F1、F2是椭圆的左、右焦点,过F2的直线与椭圆相交于P、Q两点,求△F1PQ面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com