【题目】已知全集为R,函数f(x)= 的定义域为集合A,集合B={x|x(x﹣1)≥2}
(1)求A∩B;
(2)若C={x|1﹣m<x≤m},C(RB),求实数m的取值范围.
【答案】
(1)解:由 x﹣1>0得,函数 f(x)的定义域A={x|x>1},又x2﹣x﹣2≥0,得B={x|x≥2或x≤﹣1},
∴A∩B={x|x≥2}
(2)解:∵C{x|﹣1<x<2},
①当 C=时,满足要求,此时1﹣m≥m,得 ;
②当 C≠时,要C{x|﹣1<x<2},则 ,解得 ,
由①②得,m<2,
∴实数m的取值范围(﹣∞,2)
【解析】先化简A,B,(1)根据交,并集的定义即可求出,(2)由C(RB),分类讨论,即可求出参数m的取值范围.
【考点精析】掌握集合的交集运算是解答本题的根本,需要知道交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.
科目:高中数学 来源: 题型:
【题目】直线l过定点P(0,1),且与直线l1:x-3y+10=0,l2:2x+y-8=0分别交于A、B两点.若线段AB的中点为P,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)若曲线y=f(x)在P(1,f(1))处的切线平行于直线y=﹣x+1,求函数y=f(x)的单调区间;
(2)若a>0,且对任意x∈(0,2e]时,f(x)>0恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是( )
A.经过点P0(x0 , y0)的直线都可以用方程y-y0=k(x-x0)表示
B.经过定点A(0,b)的直线都可以用方程y=kx+b表示
C.经过任意两个不同点P1(x1 , y1),P2(x2 , y2)的直线都可用方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示
D.不经过原点的直线都可以用方程 表示
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x3﹣ax2+(a2﹣1)x+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y﹣3=0.
(1)求a,b的值;
(2)求函数f(x)的单调区间,并求出f(x)在区间[﹣2,4]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线方程为16x2﹣9y2=144.
(1)求该双曲线的实轴长、虚轴长、离心率;
(2)若抛物线C的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线C的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com