精英家教网 > 高中数学 > 题目详情

【题目】2018衡水金卷(二)如图,矩形中, 于点

I)若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程;

II)过点作曲线的两条互相垂直的弦,四边形的面积为,探究是否为定值?若是,求出此定值,若不是,请说明理由.

【答案】I)曲线的轨迹方程为;(II为定值

【解析】试题分析:(1)可得M(﹣2,2λ),N(﹣2+4λ,2),,设Q(x,y),整理得: ,即可得曲线P的轨迹方程为

(2)设直线的斜率为,把代入椭圆方程,化简整理得.利用韦达定理易得四边形GFHE的面积为 ,所以

试题解析:

(1)设

,

求得,

,

,

整理得.

可知点的轨迹为第二象限的椭圆,由对称性可知曲线的轨迹方程为.

(2)设,当直线斜率存在且不为零时,设直线的斜率为,把代入椭圆方程,化简整理得.

.

.

,

∴把换成,即得.

.

当直线斜率不存在或为零时,

.

为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,平面中两条直线相交于点O,对于平面上任意一点M,若pq分别是M到直线的距离,则称有序非负实数对是点M的“距离坐标”.下列四个命题中正确命题为( )

A.,则“距离坐标”为的点有且仅有1

B.,且,则“距离坐标”为的点有且仅有2

C.,则“距离坐标”为的点有且仅有4

D.,则点M在一条过点O的直线上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,△ABC和△AA1C均是边长为2的等边三角形,点OAC中点,平面AA1C1C⊥平面ABC

(1)证明:A1O⊥平面ABC

(2)求直线AB与平面A1BC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为边长为的正方形, 分别为 的中点.

(1)求证: 平面

(2)若 平面,求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,侧面是正方形, 侧面 ,点的中点.

(1)求证: //平面

(2)若,垂足为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以平面直角坐标系的原点为极点,正半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.

(1)求直线和曲线的直角坐标方程,并指明曲线的形状;

(2)设直线与曲线交于两点, 为坐标原点,且,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.

1)求图中的值;

2)求综合评分的中位数;

3)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中至多有一个一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题px0∈(1,+∞),使得5+|x0|=6.qx∈(0,+∞),+81xa

(1)若a=9,判断命题¬ppq,(¬p)∧(¬q)的真假,并说明理由;

(2)设命题rx0Rx02+2x0+a-9≤0判断r成立是q成立的什么条件,并说明理由.

查看答案和解析>>

同步练习册答案