精英家教网 > 高中数学 > 题目详情
点P是抛物线y2=4x上的动点,点Q为圆x2+(y-4)2=1上的动点,若P点到y轴的距离为d,则|PQ|+d的最小值为
 
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:先根据抛物线方程求得焦点坐标,根据圆的方程求得圆心坐标,根据抛物线的定义可知P到准线的距离等于点P到焦点的距离,进而问题转化为求点P到点Q的距离与点P到抛物线的焦点距离之和的最小值,根据图象可知当P,Q,F三点共线时P到点Q的距离与点P到抛物线的焦点距离之和的最小,为圆心到焦点F的距离减去圆的半径.
解答: 解:抛物线y2=4x的焦点为F(1,0),准线方程为x=-1,
圆x2+(y-4)2=1的圆心为C(0,4),
根据抛物线的定义可知点P到准线的距离等于点P到焦点的距离,
故d=|PF|-1,
进而推断出当P,Q,F三点共线时P到点Q的距离与点P到抛物线的焦点距离之和的最小为:
|PQ|+|PF|=|FC|-r=
17
-1,
故|PQ|+d=PQ|+|PF|-1=
17
-2,
故答案为:
17
-2.
点评:本题主要考查了抛物线的应用.考查了学生转化和化归,数形结合等数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
log3x
的定义域是(  )
A、(0,+∞)
B、(3,+∞)
C、(1,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象过点(2,
2
),则f(x)=(  )
A、x
1
2
B、x
C、x2
D、x-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
1
a
+
1
b
=1(a>0,b>0),点(0,b)到直线x-2y-a=0的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l倾斜角为45°且与抛物线x2=2py(p>0)交于A,B两点,A,B两点的横坐标之和为2.
(Ⅰ)求此抛物线的方程;
(Ⅱ)若此抛物线的准线为t,过t上一点P作抛物线的两条切线,切点分别为M,N,判断直线MN是否过此抛物线的焦点F,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A=
π
2
且三个内角的正弦值成等比数列,则其最小角的正弦值(  )
A、
2
5
-2
2
B、
5
-1
2
C、
2
5
+2
2
D、
5
+1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合M={x|x≥1},N={x|
3
x-2
≥1},则∁U(M∩N)=(  )
A、{x|x<2}
B、{x|x≤2}
C、{x|-1<x≤2}
D、{x|-1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数m,n满足关于x的不等式|x2+mx+n|≤|3x2-6x-9|的解集为全体实数,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等比数列,若a2a3a4=64,
a6a8
=16,则(
1
4
-2×2-3-(a5 
1
3
=(  )
A、4
B、0
C、0或-4
D、-
255
128

查看答案和解析>>

同步练习册答案