精英家教网 > 高中数学 > 题目详情

【题目】某学校有体育特长生25人,美术特长生35人,音乐特长生40人.用分层抽样的方法从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为(
A.8,14,18
B.9,13,18
C.10,14,16
D.9,14,17

【答案】C
【解析】解:∵25+35+40=100,
用分层抽样的方法从中抽取40人,
∴每个个体被抽到的概率是P= = =0.4,
∴体育特长生25人应抽25×0.4=10,
美术特长生35人应抽35×0.4=14,
音乐特长生40人应抽40×0.4=16,
故选C.
根据所给的三种人数得到总体的人数,因为要抽40个人,得到每个个体被抽到的概率,用体育特长生,美术特长生,音乐特长生的人数乘以每个个体被抽到的概率.得到结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度五省情况图,则下列陈述正确的是( )

①2017年第一季度 总量和增速均居同一位的省只有1个;

②与去年同期相比,2017年第一季度五个省的总量均实现了增长;

③去年同期的总量前三位是江苏、山东、浙江;

④2016年同期浙江的总量也是第三位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

求不等式的解集;

若函数的最小值为,整数满足,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,
(1)设 ,证明:数列{bn}是等差数列;
(2)求数列 的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆经过点,离心率,直线的方程为.

求椭圆的方程;

是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记 的斜率为 .问:是否存在常数,使得?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn是公差不为0的等差数列{an}的前n项和,且S1 , S2 , S4成等比数列,a5=9.
(1)求数列{an}的通项公式;
(2)证明: + +…+ (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}满足:a1=3,(2n﹣1)an+2=(2n+1)an1+8n2(n>1,n∈N*),设 ,数列{bn}的前n项的和Sn , 则Sn的取值范围为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图中程序是计算2+3+4+5+6的值的程序.在WHILE后的①处和在s=s+i之后的②处所就填写的语句可以是(  )

A.①i>1②i=i﹣1
B.①i>1②i=i+1
C.①i>=1②i=i+1
D.①i>=1②i=i﹣1

查看答案和解析>>

同步练习册答案