精英家教网 > 高中数学 > 题目详情
4.设函数f(x)=x2+$\frac{1}{\sqrt{1+x}}$,x∈[0,1],证明:$\frac{15}{16}$<f(x)≤$\frac{2+\sqrt{2}}{2}$.

分析 (1)x∈[0,1],通过作差f(x)-(x2-$\frac{1}{2}$x+1)变形利用基本不等式的性质可得f(x)≥x2-$\frac{1}{2}$x+1=$(x-\frac{1}{4})^{2}+\frac{15}{16}$≥$\frac{15}{16}$.
(2)f(x)=x2+$\frac{1}{\sqrt{1+x}}$≤x+$\frac{1}{\sqrt{1+x}}$=g(x),x∈[0,1],利用导数研究函数g(x)的单调性,可得最大值,即可得出.

解答 证明:(1)x∈[0,1],
f(x)-(x2-$\frac{1}{2}$x+1)=$\frac{1}{\sqrt{1+x}}$+$\frac{1}{2}x$-1=$\frac{1}{\sqrt{1+x}}$+$\frac{x+1}{2}$-$\frac{3}{2}$=$\frac{1}{2\sqrt{1+x}}$+$\frac{1}{2\sqrt{1+x}}$+$\frac{x+1}{2}$-$\frac{3}{2}$
≥3×$\frac{1}{2}$×$\root{3}{\frac{1}{\sqrt{1+x}}•\frac{1}{\sqrt{1+x}}•(1+x)}$-$\frac{3}{2}$=0,当且仅当x=0时取等号.
∴f(x)≥x2-$\frac{1}{2}$x+1=$(x-\frac{1}{4})^{2}+\frac{15}{16}$≥$\frac{15}{16}$,当且仅当x=$\frac{1}{4}$时取后一个等号,因此f(x)$>\frac{15}{16}$.
(2)f(x)=x2+$\frac{1}{\sqrt{1+x}}$≤x+$\frac{1}{\sqrt{1+x}}$=g(x),x∈[0,1],
g′(x)=1-$\frac{1}{2(1+x)^{\frac{3}{2}}}$>0,∴函数g(x)在x∈[0,1]单调递增,
∴g(x)max=g(1)=1+$\frac{1}{\sqrt{2}}$=$\frac{2+\sqrt{2}}{2}$.
∴f(x)≤$\frac{2+\sqrt{2}}{2}$.当且仅当x=1时取等号.
综上(1)(2)可得:$\frac{15}{16}$<f(x))≤$\frac{2+\sqrt{2}}{2}$.

点评 本题考查了变形利用基本不等式的性质、利用导数研究函数的单调性最值,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.以(-3,4)为圆心,$\sqrt{3}$为半径的圆的标准方程为(  )
A.(x-3)2+(y+4)2=3B.(x-3)2+(y-4)2=3C.(x+3)2+(y-4)2=3D.$(x+3{)^2}+(y-4{)^2}=\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m,1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数m=(  )
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.正方体的边长为2,且它的8个顶点都在同一个球面 上,则这个球的表面积为(  )
A.12πB.-125πC.0D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在△ABC中,$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,$\overrightarrow{CA}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow{b}$,已知点P,Q分别为线段CA,CB(不含端点)上的动点,PQ与CG交于H,且H为线段CG中点,若$\overrightarrow{CP}$=m$\overrightarrow{a}$,$\overrightarrow{CQ}$=n$\overrightarrow{b}$,则$\frac{1}{m}$+$\frac{1}{n}$=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求值域:
(1)y=$\sqrt{2}$cos(2x-$\frac{π}{4}$),x∈[-$\frac{π}{8}$,$\frac{π}{2}$];
(2)y=-3sin2x-4cosx+4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则 x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”.
B.“x=1”是“x2-3x+2=0”的充分必要条件.
C.命题p:“?x∈R,sinx+cosx≤$\sqrt{2}$”是真命题
D.若¬(p∧q)为真命题,则p、q至少有一个为假命题.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算10lg3+log525=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在长方体ABCD-A1B1C1B1中,AA1=2AB=2AD=4,点E在CC1上且C1E=3EC.利用空间向量解决下列问题:
(1)证明:A1C⊥平面BED;
(2)求锐二面角A1-DE-B 的余弦值.

查看答案和解析>>

同步练习册答案