精英家教网 > 高中数学 > 题目详情

【题目】)已知三个点,圆的外接圆.

)求圆的方程.

)设直线,与圆交于两点,且,求的值.

【答案】(1) (2)

【解析】

试题分析:(1)设出圆的一般式方程,代入三个点的坐标联立方程组求得D,E,F的值,则圆的方程可求;(2)由(1)得圆M的圆心为(-4,3),半径为5,结合弦长求得圆心到直线的距离,由点到直线的距离公式列式求得m的值.

解析:

)由题意得:设所求圆的方程为x2+y2+Dx+Ey+F=0,

由已知,点A(﹣1,﹣1),B(﹣8,0),C(0,6)的坐标满足上述方程,

分别代入方程,可得

解得:D=8,E=﹣6,F=0,

所求圆的方程为:x2+y2+8x﹣6y=0,化为标准方程为:(x+4)2+(y﹣3)2=25,

的方程为

)圆心到直线的距离

弦长

有勾股定理得

解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经研究发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知:f(t)=
(1)求出k的值,并指出讲课开始后多少分钟,学生的注意力最集中?能坚持多久?
(2)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到185,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于简单几何体的说法中正确的是( )

①有两个面互相平行,其余各面都是平行四边形的多面体是棱柱;

②有一个面是多边形,其余各面都是三角形的几何体是棱锥;

③在斜二测画法中,与坐标轴不平行的线段的长度在直观图中有可能保持不变;

④有两个底面平行且相似其余各面都是梯形的多面体是棱台;

⑤空间中到定点的距离等于定长的所有点的集合是球面.

A. ③④⑤ B. ③⑤ C. ④⑤ D. ①②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意x∈[﹣1,1],不等式﹣4≤x3+3|x﹣a|≤4恒成立,则实数a的取值范围为(
A.[﹣ ]
B.[﹣ ]
C.[0, ]
D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知圆的圆心在直线上,且过点与直线相切.

)求圆的方程

)设直线与圆相交于两点.求实数的取值范围.

的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等差数列{an}的前n项和为Sn , 且满足 ,S7=56.
(1)求数列{an}的通项公式an
(2)若数列{bn}满足b1=a1且bn+1﹣bn=an+1 , 求数列 的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆及直线直线被圆截得的弦长为

)求实数的值.

)求过点并与圆相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点M(1,0)和直线x=﹣1上的动点N(﹣1,t),线段MN的垂直平分线交直线y=t于点R,设点R的轨迹为曲线E.
(1)求曲线E的方程;
(2)直线y=kx+b(k≠0)交x轴于点C,交曲线E于不同的两点A,B,点B关于x轴的对称点为点P.点C关于y轴的对称点为Q,求证:A,P,Q三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.

查看答案和解析>>

同步练习册答案