精英家教网 > 高中数学 > 题目详情
(2008•杨浦区二模)在棱长为2的正方体ABCD-A1B1C1D1中,(如图)E是棱C1D1的中点,F是侧面AA1D1D的中心.
(1)求三棱锥A1-D1EF的体积;
(2)求EF与底面A1B1C1D1所成的角的大小.(结果可用反三角函数表示)
分析:(1)由已知中棱长为2的正方体ABCD-A1B1C1D1中,E是棱C1D1的中点,F是侧面AA1D1D的中心,我们利用等体积法,可得三棱锥A1-D1EF的体积等于三棱锥E-D1A1F的体积,分别求出其底面面积和高,代入棱锥的体积公式,即可得到答案.
(2)取A1D1的中点G,易得FG⊥平面A1B1C1D1,根据线面夹角的定义可得∠GEF即为EF与底面A1B1C1D1所成的角的平面角,解Rt△GEF即可得到EF与底面A1B1C1D1所成的角的大小.
解答:解:(1)VA1-D1EF=VE-A1D1F=
1
3
•1•1=
1
3
.(6分)(体积公式正确3分)
(2)取A1D1的中点G,则FG⊥平面A1B1C1D1,EF在底面A1B1C1D1的射影为GE,所求的角的大小等于∠GEF的大小,(8分)
在Rt△GEF中tan∠GEF=
2
2
,所以EF与底面A1B1C1D1所成的角的大小是arctan
2
2
.(12分)
点评:本题考查的知识点是棱锥的体积,直线与平面所成的角,其中(1)的关键是利用等体积法,将求三棱锥A1-D1EF的体积转化为求三棱锥E-D1A1F的体积,降低运算的难度,(2)的关键是确定出∠GEF即为EF与底面A1B1C1D1所成的角的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•杨浦区二模)若集合A={x|x2-2x-3≤0},B={x|x>a},且A∩B=φ,则实数a的取值范围是
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(文)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为
x2
9
-
y2
4
=1
,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;

(2)已知抛物线C1:y2=2x,经过伸缩变换后得抛物线C2:y2=32x,求伸缩比λ.
(3)射线l的方程y=
2
2
x(x≥0)
,如果椭圆C1
x2
16
+
y2
4
=1
经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且|AB|=
2
,求椭圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)若函数f(x)=
x
x+2
的反函数是y=f-1(x),则f-1(
1
2
)
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)在极坐标系中,曲线ρ=4sin(θ-
π
3
)
关于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)若z1=1+i,z1
.
z2
=2
,则z2=
1+i
1+i

查看答案和解析>>

同步练习册答案