【题目】如图,多面体中,四边形是为钝角的平行四边形,四边形为直角梯形,且.
(1)求证:;
(2)若点到平面的距离为,求直线与平面所成角的正弦值.
【答案】(1)证明见解析(2)
【解析】
(1)利用勾股定理证得,结合,证得平面,根据线线平行证得平面,由此证得.判断出四边形为菱形,由此证得,由此证得平面,从而证得.
(2)利用第一问的结论,判断出线与平面所成角,结合点到平面的距离为,求得的长,然后通过解三角形,把相应的线面角的正弦值求出.
(1)在中,,所以
又因为,所以平面,因为
所以平面,所以,
在平行四边形中,且,所以平行四边形为菱形
于是
所以平面,而平面,所以.
(2)因为平面且垂足为,所以为直线与平面所成角.
因为平面,平面,所,
所以到平面的距离为到平面的距离.
所以平面平面
所以平面平面且交线为
过作,则,所以
所以,所以
在中,,
所以.所以直线与平面所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为,(t为参数),在以原点为极点,x轴正半轴为极轴的极坐标中,曲线的极坐标方程为.
(1)将与的方程化为极坐标方程;
(2)若曲线与的公共点都在上,,求r.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016里约奥运会期间,小赵常看的4个电视频道中有2个频道在转播奥运比赛,若小赵这时打开电视,随机打开其中两个频道试看,那么,小赵所看到的第一个电视台恰好没有转播奥运比赛,而第二个电视台恰好在转播奥运比赛的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(k+)lnx+,k∈[4,+∞),曲线y=f(x)上总存在两点M(x1,y1),N(x2,y2),使曲线y=f(x)在M,N两点处的切线互相平行,则x1+x2的取值范围为
A. (,+∞) B. (,+∞) C. [,+∞) D. [,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),以该直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)分别求曲线的极坐标方程和曲线的直角坐标方程;
(Ⅱ)设直线交曲线于,两点,交曲线于,两点,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com