精英家教网 > 高中数学 > 题目详情

已知函数处取得极值2.

⑴ 求函数的解析式;

⑵ 若函数在区间上是单调函数,求实数m的取值范围;

【解析】第一问中利用导数

又f(x)在x=1处取得极值2,所以

所以

第二问中,

因为,又f(x)的定义域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上单调递增,在上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有,得

解:⑴ 求导,又f(x)在x=1处取得极值2,所以,即,所以…………6分

⑵ 因为,又f(x)的定义域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上单调递增,在上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有,得,                …………9分

当f(x)在区间(m,2m+1)上单调递减,则有 

                                                …………12分

.综上所述,当时,f(x)在(m,2m+1)上单调递增,当时,f(x)在(m,2m+1)上单调递减;则实数m的取值范围是

 

【答案】

       ⑵

 

练习册系列答案
相关习题

科目:高中数学 来源:2013届度江西南昌二中高二下学期期末理科数学试卷(解析版) 题型:解答题

(本题12分)已知函数处取得极值.

(1) 求

(2 )设函数,如果在开区间上存在极小值,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年贵州省毕节市高三上学期第三次月考理科数学试卷 题型:解答题

已知函数=处取得极值.

(1)求实数的值;

(2) 若关于的方程上恰有两个不相等的实数根,求实数的取值范围;

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省高三第一次月考理科数学试卷 题型:解答题

(本小题满分14分) 已知函数处取得极值。

(Ⅰ)求函数的解析式;

(Ⅱ)求证:对于区间上任意两个自变量的值,都有

(Ⅲ)若过点可作曲线的三条切线,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广西柳铁一中高三第三次月考文科数学试卷 题型:解答题

设函数为实数。

(Ⅰ)已知函数处取得极值,求的值;

(Ⅱ)已知不等式对任意都成立,求实数的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省高三第二阶段考试数学理卷 题型:解答题

(12分)已知函数处取得极值.

(Ⅰ)求实数的值;[来源:学+科+网]

(Ⅱ)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围.

 

查看答案和解析>>

同步练习册答案