精英家教网 > 高中数学 > 题目详情
17.函数f(x)=log3(4x-1)的定义域为(  )
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2},+∞$)C.($\frac{1}{4},\frac{1}{2}$]D.($\frac{1}{4},+∞$)

分析 由对数有意义可得4x-1>0,解不等式可得函数的定义域.

解答 解:由对数有意义可得4x-1>0,
解不等式可得x>$\frac{1}{4}$,
∴函数的定义域为($\frac{1}{4}$,+∞)
故选:D

点评 本题考查对数函数的定义域,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1中,过点P(1,1)的弦被点P平分,则此弦所在的直线方程为(  )
A.x+2y-3=0B.x-2y-3=0C.x+2y+3=0D.x-2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在区间(-∞,0)上单调递增的函数是(  )
A.y=2xB.y=log2xC.y=$\frac{2}{x}$D.y=-2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=f(x)是奇函数,当x>0时,f(x)=$\sqrt{x}+1$,则当x<0时,f(x)=-$\sqrt{-x}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{sinπx,x∈[0,2]}\\{\frac{1}{2}f(x-2),x∈(2,+∞)}\end{array}\right.$,g(x)=ln(x-1),则函数h(x)=f(x)-g(x)的零点个数(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示,A,B分别是椭圆的右、上顶点,C是AB的三等分点(靠近点B),F为椭圆的右焦点,OC的延长线交椭圆于点M,且MF⊥OA,则椭圆的离心率为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知R为实数集,M=$\left\{{y\left|{y=\sqrt{1+x}}\right.}\right\}$,$N=\left\{{x|y=\sqrt{x-1}}\right\}$,则M∩(∁RN)=(  )
A.{x|0≤x<1}B.{x|-1≤x<1}C.{x|-1≤x≤0}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.从1,2,3,…,9中,随机抽取2个不同的数,则这2个数的和是偶数的概率是$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,角A、B、C所对的边分别是a、b、c,满足acosA+bcosB=ccosC,则△ABC为(  )
A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形

查看答案和解析>>

同步练习册答案