精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)当时,讨论的单调性;
(Ⅱ)设时,若对任意,存在,使,求实数的取值范围.
(Ⅰ)当时,函数在(0,1)上单调递减;
函数在(1,+∞)上单调递增;
时,函数在(0,+∞)上单调递减;
时,函数在(0,1)上单调递减; 
函数上单调递增;
函数上单调递减,
(Ⅱ)

试题分析:(Ⅰ)因为
所以

(1)当
所以,当,函数单调递减;
时,,此时单调递
(2)当
,解得
①当时,恒成立,
此时,函数在(0,+∞)上单调递减;
②当
时,单调递减;
时,单调递增;
,此时,函数单调递减;
③当时,由于
时,,此时,函数单调递减;
时,,此时,函数单调递增。
综上所述:
时,函数在(0,1)上单调递减;
函数在(1,+∞)上单调递增;
时,函数在(0,+∞)上单调递减;
时,函数在(0,1)上单调递减; 
函数上单调递增;
函数上单调递减,
(Ⅱ)因为,由(Ⅰ)知,
,当
函数单调递减;当时,
函数单调递增,所以在(0,2)上的最小值为
由于“对任意,存在,使”等价于
在[1,2]上的最小值不大于在(0,2)上的最小值” (*)
,所以
①当时,因为,此时与(*)矛盾;
②当时,因为,同样与(*)矛盾;
③当时,因为
解不等式,可得
综上,的取值范围是
点评:典型题,本题属于导数应用中的基本问题,恒成立问题,往往通过“分离参数”,转化成求函数的最值。涉及对数函数,要特别注意函数的定义域。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的单调区间;
(2)若对于任意的,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)当时,求的单调区间;
(2)(i)设的导函数,证明:当时,在上恰有一个使得
(ii)求实数的取值范围,使得对任意的,恒有成立。
注:为自然对数的底数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数为自然对数的底数).
时,求的单调区间;若函数上无零点,求最小值;
若对任意给定的,在上总存在两个不同的),使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递增区间为_______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,在区间上为减函数的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若定义在R上的偶函数对任意,有,则
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数,其中,若动直线与函数的图像有三个不同的交点,它们的横坐标分别为,则是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”_______________.

查看答案和解析>>

同步练习册答案