精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
)
,给出以下四个论断:
①它的图象关于直线x=
π
12
对称;
②它的图象关于点(
π
3
,0)对称;
③它的最小正周期是π;
④在区间[-
π
6
,0
]上是增函数.
以其中两个论断作为条件,余下论断作为结论,一个正确的命题:
条件
3
,结论
A、①②⇒③④
B、③④⇒①②
C、②④⇒①③
D、①③⇒②④
分析:由③知ω=2,再由对称轴,可得函数解析式,再求出函数的单调区间[kπ-
12
,kπ+
π
12
](k∈z)
,因为[-
π
6
,0]⊆[-
12
π
12
]
可得f(x)在区间[-
π
6
,0
]上是增函数,得到结论.
解答:解:①③⇒②④
由③知ω=2
f(x)=sin(2x+?)(ω>0,-
π
2
<?<
π
2
)

又由①2×
π
12
+φ=kπ+
π
2

∴φ=kπ+
π
3

又∵-
π
2
<?<
π
2

∴φ=
π
3

f(x)=sin(2x+
π
3
)

2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2

kπ-
12
≤x≤kπ+
π
12

[-
π
6
,0]⊆[-
12
π
12
]

∴f(x)在区间[-
π
6
,0
]上是增函数
故选D
点评:本题主要考查三角函数的周期性,单调性,对称性,以及学生构造命题拓展问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•安徽模拟)设函数f(x)=sin(x+
π
6
)+2sin2
x
2
,x∈[0,π]

(Ⅰ)求f(x)的值域;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=
3
,求a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
,给出以下四个论断:
①它的图象关于直线x=
π
12
对称;     
②它的图象关于点(
π
3
,0)
对称;
③它的周期是π;                   
④在区间[0,
π
6
)
上是增函数.
以其中两个论断作为条件,余下的一个论断作为结论,写出你认为正确的命题:
条件
①③
①③
结论
;(用序号表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的部分图象如图所示.
(1)求f(x)的表达式;
(2)若f(x)•f(-x)=
1
4
x∈(
π
4
π
2
)
,求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+
π
3
)
,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinωx+2
3
sin2
ωx
2
(ω>0)的最小正周期为
3

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若将y=f(x)的图象向左平移
π
2
个单位可得y=g(x)的图象,求不等式g(x)≥2
3
的解集.

查看答案和解析>>

同步练习册答案