【题目】设数列的前项和为,对一切,点都在函数的图象上.
(1)求,归纳数列的通项公式(不必证明).
(2)将数列依次按1项、2项、3项、4项循环地分为,,,;,,,;,…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值.
(3)设为数列的前项积,且,求数列的最大项.
【答案】(1),,,;(2)2010;(3).
【解析】
(1)化简得到,计算,,,猜想得到答案.
(2)计算,再计算,相加得到答案.
(3)计算,故,故是单调递减,计算得到答案.
(1)因为点在函数的图象上,故,所以.令,得,所以;
令,得,所以;
令,得,所以;
由此猜想:.
(2)因为,所以数列依次按1项、2项、3项、4项循环地分为,,,;,,,;,
每一次循环记为一组.由于每一个循环含有4个括号,
故是第25组中第4个括号内各数之和.
由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.
同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.
故各组第4个括号中各数之和构成等差数列,且公差为80.
注意到第一组中第4个括号内各数之和是68,所以.
又,所以.
(3)因为,故,
所以.
由于,
所以,故是单调递减,
于是数列的最大项为.
科目:高中数学 来源: 题型:
【题目】已知点A是以BC为直径的圆O上异于B,C的动点,P为平面ABC外一点,且平面PBC⊥平面ABC,BC=3,PB=2,PC,则三棱锥P﹣ABC外接球的表面积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在实数集上的偶函数和奇函数满足.
(1)求与的解析式;
(2)若定义在实数集上的以2为最小正周期的周期函数,当时,,试求在闭区间上的表达式,并证明在闭区间上单调递减;
(3)设(其中为常数),若对于恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,是圆上的一个动点,为圆心,线段的垂直平分线与直线的交点为.
(1)求点的轨迹的方程;
(2)设与轴的正半轴交于点,直线与交于两点(不经过点),且,证明:直线经过定点,并写出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)如图,在直角坐标系中,角的顶点是原点,始边与轴正半轴重合.终边交单位圆于点,且,将角的终边按逆时针方向旋转,交单位圆于点,记.
(1)若,求;
(2)分别过作轴的垂线,垂足依次为,记的面积为,的面积为,若,求角的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】按照如下规则构造数表:第一行是:2;第二行是:;即3,5,第三行是:即4,6,6,8;(即从第二行起将上一行的数的每一项各项加1写出,再各项加3写出)
2
3,5
4,6,6,8
5,7,7,9,7,9,9,11
……………………………………
若第行所有的项的和为.
(1)求;
(2)试求与的递推关系,并据此求出数列的通项公式;
(3)设,求和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=2py(p>0),直线l1:y=kx+t与抛物线C交于A,B两点(A点在B点右侧),直线l2:y=kx+m(m≠t)交抛物线C于M,N两点(M点在N点右侧),直线AM与直线BN交于点E,交点E的横坐标为2k,则抛物线C的方程为( )
A.x2=yB.x2=2yC.x2=3yD.x2=4y
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com