精英家教网 > 高中数学 > 题目详情

【题目】设数列的前项和为,对一切,点都在函数的图象上.

1)求,归纳数列的通项公式(不必证明).

2)将数列依次按1项、2项、3项、4项循环地分为,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值.

3)设为数列的前项积,且,求数列的最大项.

【答案】1;(22010;(3.

【解析】

1)化简得到,计算,猜想得到答案.

2)计算,再计算,相加得到答案.

3)计算,故,故是单调递减,计算得到答案.

1)因为点在函数的图象上,故,所以.,得,所以

,得,所以

,得,所以

由此猜想:.

2)因为,所以数列依次按1项、2项、3项、4项循环地分为

每一次循环记为一组.由于每一个循环含有4个括号,

是第25组中第4个括号内各数之和.

由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.

同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.

故各组第4个括号中各数之和构成等差数列,且公差为80.

注意到第一组中第4个括号内各数之和是68,所以.

,所以.

3)因为,故

所以.

由于

所以,故是单调递减,

于是数列的最大项为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A是以BC为直径的圆O上异于BC的动点,P为平面ABC外一点,且平面PBC⊥平面ABCBC=3,PB=2PC,则三棱锥PABC外接球的表面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在实数集上的偶函数和奇函数满足.

1)求的解析式;

2)若定义在实数集上的以2为最小正周期的周期函数,当时,,试求在闭区间上的表达式,并证明在闭区间上单调递减;

3)设(其中为常数),若对于恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆上的一个动点,为圆心,线段的垂直平分线与直线的交点为

1)求点的轨迹的方程;

2)设轴的正半轴交于点,直线交于两点(不经过点),且,证明:直线经过定点,并写出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分13分如图在直角坐标系的顶点是原点始边与轴正半轴重合终边交单位圆于点将角的终边按逆时针方向旋转交单位圆于点

1

2分别过轴的垂线垂足依次为的面积为的面积为求角的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照如下规则构造数表:第一行是:2;第二行是:;即35,第三行是:4668(即从第二行起将上一行的数的每一项各项加1写出,再各项加3写出)

2

3,5

4,6,6,8

5,7,7,9,7,9,9,11

……………………………………

若第行所有的项的和为

1)求

2)试求的递推关系,并据此求出数列的通项公式;

3)设,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cx22pyp0),直线l1ykx+t与抛物线C交于AB两点(A点在B点右侧),直线l2ykx+mmt)交抛物线CMN两点(M点在N点右侧),直线AM与直线BN交于点E,交点E的横坐标为2k,则抛物线C的方程为(

A.x2yB.x22yC.x23yD.x24y

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间内存在零点.

1)求的范围;

2)设的两个零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)证明:f(x)≥5;

(2)若f(1)<6成立,求实数a的取值范围。

查看答案和解析>>

同步练习册答案