精英家教网 > 高中数学 > 题目详情

【题目】为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车。每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车。今年初投入了电力型公交车辆,混合动力型公交车辆,计划以后电力型车每年的投入量比上一年增加,混合动力型车每年比上一年多投入辆.设分别为第年投入的电力型公交车、混合动力型公交车的数量,设分别为年里投入的电力型公交车、混合动力型公交车的总数量。

1)求,并求年里投入的所有新公交车的总数

2)该市计划用年的时间完成全部更换,求的最小值.

【答案】1

2147

【解析】

试题(1)设分别为第年投入的电力型公交车、混合动力型公交车的数量,通过分析可知数列是首项为、公比为的等比数列,数列是首项为、公差为的等差数列,由等比数列的前项和公式,等差数列的前项和公式即可求出;2)通过分析是关于的单调递增函数,故是关于的单调递增函数,要求满足的最小值应该是,此时应注意实际问题中取整的问题.

试题解析:(1)设分别为第年投入的电力型公交车、混合动力型公交车的数量,

依题意知,数列是首项为、公比为的等比数列; 1

数列是首项为、公差为的等差数列, 2

所以数列的前项和4

数列的前项和6

所以经过年,该市更换的公交车总数

7

2)因为是关于的单调递增函数, 9

因此是关于的单调递增函数, 10

所以满足的最小值应该是11

,解得12

,所以的最小值为147

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ x2﹣ax(a为常数)有两个极值点.
(1)求实数a的取值范围;
(2)设f(x)的两个极值点分别为x1 , x2 , 若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知 ,sinA= . (Ⅰ)求sinC的值;
(II)设D为AC的中点,若△ABC的面积为8 ,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x+2sinxcosx+3cos2x. (Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若x∈[0, ],求函数f(x)的最值及相应x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x-1|+|x-2|.

(1)求不等式f(x)≥3的解集;

(2)若存在实数x满足f(x)≤-a2+a+7,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于序列A0:a0 , a1 , a2 , …,an(n∈N*),实施变换T得序列A1:a1+a2 , a2+a3 , …,an1+an , 记作A1=T(A0):对A1继续实施变换T得序列A2=T(A1)=T(T(A0)),记作A2=T2(A0);…;An1=Tn1(A0).最后得到的序列An1只有一个数,记作S(A0). (Ⅰ)若序列A0为1,2,3,求S(A0);
(Ⅱ)若序列A0为1,2,…,n,求S(A0);
(Ⅲ)若序列A和B完全一样,则称序列A与B相等,记作A=B,若序列B为序列A0:1,2,…,n的一个排列,请问:B=A0是S(B)=S(A0)的什么条件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.得到甲、乙两位学生成绩的茎叶图.

(1)现要从中选派一人参加数学竞赛,对预赛成绩的平均值和方差进行分析,你认为哪位学生的成绩更稳定?请说明理由;

(2)求在甲同学的8次预赛成绩中,从不小于80分的成绩中随机抽取2个成绩,列出所有结果,并求抽出的2个成绩均大于85分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项中,奇数项的和为56,偶数项的和为48,且(其中).

(1)求数列的通项公式;

(2)若,…,,…是一个等比数列,其中,求数列的通项公式;

(3)若存在实数,使得对任意恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数,关于x的方程3个不同的实数根,则(  )

A. b<﹣2c0B. b>﹣2c0C. b=﹣2c0D. b>﹣2c0

查看答案和解析>>

同步练习册答案