精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)求证:

【答案】(Ⅰ)单调递减区间为,无单调递增区间.(Ⅱ)见解析

【解析】

(Ⅰ)根据函数解析式,先求得导函数,利用,即可分析出的符号,即可判断函数的单调区间;

(Ⅱ)方法一:根据不等式,构造函数,求得导函数,再构造函数,并求得,由的符号可判断的单调性、零点与最小值,进而得的符号,即可判断的单调性,从而求得的最小值,即可证明不等式成立;方法二:构造函数,求得导函数可得的单调性与最值,从而可证明,结合(Ⅰ)可得,结合两式即可证明不等式成立.

(Ⅰ)函数,则定义域为

(当且仅当时取等号),

的单调递减区间为,无单调递增区间.

(Ⅱ)证法一:令函数

显然

令函数

由(Ⅰ)知

所以

上是增函数,

时,,所以单调递减,

时,,所以单调递增.

的最小值为

证法二:令函数

定义域为

函数在定义域上是增函数,

,①

,②

+②得

即当时,

另外,当时,

由(Ⅰ)可知函数上是减函数,

综上,对.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是九江市20194月至20203月每月最低气温与最高气温(℃)的折线统计图:已知每月最低气温与最高气温的线性相关系数r0.83,则下列结论错误的是(

A.每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关

B.月温差(月最高气温﹣月最低气温)的最大值出现在10

C.912月的月温差相对于58月,波动性更大

D.每月最高气温与最低气温的平均值在前6个月逐月增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数ae2x+(a﹣2) exx.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年上半年,随着新冠肺炎疫情在全球蔓延,全球超过个国家或地区宣布进人紧急状态,部分国家或地区直接宣布“封国”或“封城”,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为年第一季度企业成立年限与倒闭分布情况统计表:

企业成立年份

2019

2018

2017

2016

2015

企业成立年限

1

2

3

4

5

倒闭企业数量(万家)

5.28

4.72

3.58

2.70

2.15

倒闭企业所占比例

21.4%

19.1%

14.5%

10.9%

8.7%

1)由所给数据可用线性回归模型拟合的关系,请用相关系数加以说明;

2)建立关于的回归方程,预测年成立的企业中倒闭企业所占比例.

参考数据:

相关系数,样本的最小二乘估计公式为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为边长为2的菱形,的中点,

(Ⅰ)求证:平面

(Ⅱ)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,其中常数

)若,求的取值范围;

)若,求证:对于任意的,均有

)当常数时,设,若存在实数使得恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数满足约束条件,的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数有最大值,则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对于函数有下述四个结论:①函数在其定义域上为增函数;②对于任意的,都有成立;③有且仅有两个零点;④若,则在点处的切线与在点处的切线为同一直线.其中所有正确的结论有( )

A.①②③B.①③C.②③④D.③④

查看答案和解析>>

同步练习册答案