精英家教网 > 高中数学 > 题目详情

如图,已知椭圆=1(a>b>0)的离心率为,且过点A(0,1).
 
(1)求椭圆的方程;
(2)过点A作两条互相垂直的直线分别交椭圆于点M、N,求证:直线MN恒过定点P.

(1)+y2=1.(2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知是椭圆上不同的三点,在第三象限,线段的中点在直线上.

(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点在椭圆上(异于点)且直线PBPC分别交直线OA两点,证明为定值并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明:以PQ为直径的圆恒过y轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的离心率等于2,且经过点M(-2,3),求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点F,左、右准线分别为l1:x=-m-1,l2:x=m+1,且l1、l2分别与直线y=x相交于A、B两点.
(1)若离心率为,求椭圆的方程;
(2)当·<7时,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)经过点M(-2,-1),离心率为.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.
(1)求椭圆C的方程;
(2)试判断直线PQ的斜率是否为定值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.

(1)求椭圆C的标准方程;
(2)设点P为准线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆+=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若·+·=8,求k的值.

查看答案和解析>>

同步练习册答案