精英家教网 > 高中数学 > 题目详情

【题目】下列四个命题中真命题是  

A. 同垂直于一直线的两条直线互相平行

B. 底面各边相等,侧面都是矩形的四棱柱是正四棱柱

C. 过空间任一点与两条异面直线都垂直的直线有且只有一条

D. 过球面上任意两点的大圆有且只有一个

【答案】C

【解析】

通过垂直于同一直线的两条直线的位置关系不确定”可判断A是否正确;通过“底面各边相等,侧面都是矩形的四棱柱底面不一定是正方形”可判断B是否正确;通过“两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条”可判断C是否正确;通过“经过球面上任意两点的大圆有无数个”可判断D是否正确。

A垂直于同一直线的两条直线不一定互相平行,故A错;

B项:底面各边相等,侧面都是矩形的四棱柱是直四棱柱,不一定是正四棱柱,故B错;

C项:两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条,故C正确;

D项:过球面上任意两点的大圆有无数个,故D错,故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的图象可能是(

A.(1)(3)
B.(1)(2)(4)
C.(2)(3)(4)
D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某园林基地培育了一种新观赏植物,经过一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按照 的分组作出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在的数据).

1)求样本容量和频率分布直方图中的的值;

2)在选取的样本中,从高度在厘米以上(含厘米)的植株中随机抽取株,求所取的株中至少有一株高度在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=xex
(1)求f(x)的极值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的序号是: _________

①已知恒成立,若为真命题,则实数的最大值为2

②已知三点共线,则的最小值为11;

③已知是椭圆的为两个焦点,点在椭圆上,则使三角形为直角三角形的点个数4

④在圆内,过点条弦的长度成等差数列,最小弦长为数列的首项,最大弦长为,若公差那么的取值集合为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本市某玩具生产公司根据市场调查分析,决定调整产品生产方案,准备每天生产 三种玩具共100个,且种玩具至少生产20个,每天生产时间不超过10小时,已知生产这些玩具每个所需工时(分钟)和所获利润如表:

玩具名称

工时(分钟)

5

7

4

利润(元)

5

6

3

(Ⅰ)用每天生产种玩具个数种玩具表示每天的利润(元);

(Ⅱ)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C:+=1(a>b>0)的短轴两端点为B1(0,﹣1)、B2(0,1),离心率e=,点P是椭圆C上不在坐标轴上的任意一点,直线B1P和B2P分别与x轴相交于M,N两点,

(1)求椭圆的方程和的值;

(2)若点坐标为(1,0),点的直线与椭圆相交于两点,试求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有四个命题:
①函数y=tan x在每一个周期内都是增函数.
②函数y=sin(2x+ )的图象关于直线x= 对称;
③函数y=tanx的对称中心(kπ,0),k∈Z.
④函数y=sin(2x﹣ )是偶函数.
其中正确结论个数(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的则判断框内可以填入

A. B. C. D.

查看答案和解析>>

同步练习册答案