ÔÚR+Éϵĵݼõº¯Êýf£¨x£©Í¬Ê±Âú×㣺£¨1£©µ±ÇÒ½öµ±x¡ÊM?R+ʱ£¬º¯ÊýÖµf£¨x£©µÄ¼¯ºÏΪ[0£¬2]£»£¨2£©f£¨
1
2
£©=1£»£¨3£©¶ÔMÖеÄÈÎÒâx1¡¢x2¶¼ÓÐf£¨x1•x2£©=f£¨x1£©+f£¨x2£©£»£¨4£©y=f£¨x£©ÔÚMÉϵķ´º¯ÊýΪy=f-1£¨x£©£®
£¨1£©ÇóÖ¤£º
1
4
¡ÊM£¬µ«
1
8
∉M£»
£¨2£©ÇóÖ¤£ºf-1£¨x1£©•f-1£¨x2£©=f-1£¨x1+x2£©£»
£¨3£©½â²»µÈʽ£ºf-1£¨x2-x£©•f-1£¨x-1£©¡Ü
1
2
£®
·ÖÎö£º£¨1£©¸ù¾Ýµ±ÇÒ½öµ±x¡ÊM?R+ʱ£¬º¯ÊýÖµf£¨x£©µÄ¼¯ºÏΪ[0£¬2]£¬ÇÒf£¨
1
2
£©=1£¬¶ÔMÖеÄÈÎÒâx1¡¢x2¶¼ÓÐf£¨x1•x2£©=f£¨x1£©+f£¨x2£©£¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨2£©¸ù¾Ýy=f£¨x£©ÔÚMÉϵݼõ£¬¿ÉµÃy=f£¨x£©ÔÚMÓз´º¯Êýy=f-1£¨x£©£¬x¡Ê[0£¬2]£¬ÈÎÈ¡x1¡¢x2¡Ê[0£¬2]£¬Éèy1=f-1£¨x1£©£¬y2=f-1£¨x2£©£¬ËùÒÔx1=f£¨y1£©£¬x2=f£¨y2£©£¨y1¡¢y2¡ÊM£©£¬´úÈëf£¨x1•x2£©=f£¨x1£©+f£¨x2£©¼´¿ÉÖ¤µÃ½áÂÛ£»£¨3£©f-1£¨x2-x£©•f-1£¨x-1£©¡Ü
1
2
µÈ¼ÛÓÚ£ºf-1£¨x2-x+x-1£©¡Üf-1£¨1£©£¬ÀûÓú¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿É°ÑÔ­²»µÈʽת»¯Îª
0¡Üx2-x¡Ü 2
0¡Üx-1¡Ü2
x2-1¡Ý1
£¬½â´Ë²»µÈʽ×é¼´¿ÉÇóµÃ½á¹û£®
½â´ð£º½â£º£¨1£©Ö¤Ã÷£ºÒòΪ
1
2
¡ÊM£¬ÓÖ
1
4
=
1
2
¡Á
1
2
£¬f£¨
1
2
£©=1£¬
ËùÒÔf£¨
1
4
£©=f£¨
1
2
¡Á
1
2
£©=f£¨
1
2
£©+f£¨
1
2
£©=2¡Ê[0£¬2]£¬ËùÒÔ
1
4
¡ÊM£¬
ÓÖÒòΪf£¨
1
8
£©=f£¨
1
4
¡Á
1
2
£©=f£¨
1
4
£©+f£¨
1
2
£©=3∉[0£¬2]£¬ËùÒÔ
1
8
∉M£»
£¨2£©ÒòΪy=f£¨x£©ÔÚMÉϵݼõ£¬ËùÒÔy=f£¨x£©ÔÚMÓз´º¯Êýy=f-1£¨x£©£¬x¡Ê[0£¬2]
ÈÎÈ¡x1¡¢x2¡Ê[0£¬2]£¬Éèy1=f-1£¨x1£©£¬y2=f-1£¨x2£©£¬
ËùÒÔx1=f£¨y1£©£¬x2=f£¨y2£©£¨y1¡¢y2¡ÊM£©
ÒòΪx1+x2=f£¨y1£©+f£¨y2£©=f£¨y1y2£©£¬
ËùÒÔy1y2=f-1£¨x1+x2£©£¬ÓÖy1y2=f-1£¨x1£©f-1£¨x2£©£¬
ËùÒÔ£ºf-1£¨x1£©•f-1£¨x2£©=f-1£¨x1+x2£©£»
£¨3£©ÒòΪy=f£¨x£©ÔÚMÉϵݼõ£¬ËùÒÔf-1£¨x£©ÔÚ[0£¬2]ÉÏÒ²µÝ¼õ£¬
f-1£¨x2-x£©•f-1£¨x-1£©¡Ü
1
2
µÈ¼ÛÓÚ£ºf-1£¨x2-x+x-1£©¡Üf-1£¨1£©
0¡Üx2-x¡Ü 2
0¡Üx-1¡Ü2
x2-1¡Ý1

¼´£º
-1¡Üx¡Ü0»ò1¡Üx¡Ü2
1¡Üx¡Ü3
x¡Ü -
2
»òx¡Ý
2

ËùÒÔ
2
¡Üx¡Ü2£®
µãÆÀ£º´ËÌ⿼²é³éÏóº¯Êý¼°ÆäÓ¦Ó㬷´º¯ÊýÒÔ¼°ÀûÓú¯ÊýµÄµ¥µ÷ÐԽⲻµÈʽµÈÎÊÌ⣬ÌرðÊÇÎÊÌ⣨3£©£¬ÀûÓú¯ÊýµÄµ¥µ÷Ð԰Ѳ»µÈʽf-1£¨x2-x£©•f-1£¨x-1£©¡Ü
1
2
ת»¯Îª
0¡Üx2-x¡Ü 2
0¡Üx-1¡Ü2
x2-1¡Ý1
£¬ÊǽâÌâµÄ¹Ø¼ü£¬ÌåÏÖÁËת»¯µÄ˼Ï룬ͬʱ¿¼²éÁËѧÉúÁé»îÓ¦ÓÃ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦ºÍÔËËãÄÜÁ¦£¬ÊôÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨ÒåÔÚRÉϵÄÆ溯Êýf£¨x£©£¬µ±x£¾0ʱ£¬f£¨x£©=
x2+1
-
1
2
ax
£®
£¨¢ñ£©µ±a=
2
ʱ£¬ÌÖÂÛf£¨x£©£¬ÔÚ£¨-¡Þ£¬0£©Éϵĵ¥µ÷ÐÔ£»
£¨¢ò£©Èôf£¨x£©£¬ÔÚ£¨-¡Þ£¬0£©ÉÏΪµ¥µ÷µÝ¼õº¯Êý£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÔÚR+Éϵĵݼõº¯Êýf£¨x£©Í¬Ê±Âú×㣺£¨1£©µ±ÇÒ½öµ±x¡ÊM?R+ʱ£¬º¯ÊýÖµf£¨x£©µÄ¼¯ºÏΪ[0£¬2]£»£¨2£©f£¨Êýѧ¹«Ê½£©=1£»£¨3£©¶ÔMÖеÄÈÎÒâx1¡¢x2¶¼ÓÐf£¨x1•x2£©=f£¨x1£©+f£¨x2£©£»£¨4£©y=f£¨x£©ÔÚMÉϵķ´º¯ÊýΪy=f-1£¨x£©£®
£¨1£©ÇóÖ¤£ºÊýѧ¹«Ê½¡ÊM£¬µ«Êýѧ¹«Ê½∉M£»
£¨2£©ÇóÖ¤£ºf-1£¨x1£©•f-1£¨x2£©=f-1£¨x1+x2£©£»
£¨3£©½â²»µÈʽ£ºf-1£¨x2-x£©•f-1£¨x-1£©¡ÜÊýѧ¹«Ê½£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

(±¾Ìâ18·Ö)ÔÚR+Éϵĵݼõº¯Êýf(x)ͬʱÂú×㣺(1)µ±ÇÒ½öµ±xÎM  R+ʱ£¬º¯ÊýÖµf(x)µÄ¼¯ºÏΪ[0, 2]£»(2)f()=1£»(3)¶ÔMÖеÄÈÎÒâx1¡¢x2¶¼ÓÐf(x1x2)= f(x1)+ f(x2)£»(4)y=f(x)ÔÚMÉϵķ´º¯ÊýΪy=f¨C1(x)£®

(1)ÇóÖ¤£ºÎM£¬µ«ÏM£»

(2)ÇóÖ¤£ºf¨C1(x1)• f¨C1(x2)= f¨C1(x1+x2)£»

(3)½â²»µÈʽ£ºf¨C1(x2¨Cx)• f¨C1(x¨C1)¡Ü£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011ÄêÉϺ£ÊнðɽÇø¸ß¿¼ÊýѧһģÊÔ¾í£¨ÎÄÀíºÏ¾í£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔÚR+Éϵĵݼõº¯Êýf£¨x£©Í¬Ê±Âú×㣺£¨1£©µ±ÇÒ½öµ±x¡ÊM?R+ʱ£¬º¯ÊýÖµf£¨x£©µÄ¼¯ºÏΪ[0£¬2]£»£¨2£©f£¨£©=1£»£¨3£©¶ÔMÖеÄÈÎÒâx1¡¢x2¶¼ÓÐf=f£¨x1£©+f£¨x2£©£»£¨4£©y=f£¨x£©ÔÚMÉϵķ´º¯ÊýΪy=f-1£¨x£©£®
£¨1£©ÇóÖ¤£º¡ÊM£¬µ«∉M£»
£¨2£©ÇóÖ¤£ºf-1£¨x1£©•f-1£¨x2£©=f-1£¨x1+x2£©£»
£¨3£©½â²»µÈʽ£ºf-1£¨x2-x£©•f-1£¨x-1£©¡Ü£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸