精英家教网 > 高中数学 > 题目详情
11.已知直线l1:3x-y+2=0,l2:x+my-3=0,若l1∥l2,则m的值等于-$\frac{1}{3}$.

分析 利用平行线的充要条件即可得出.

解答 解:∵l1∥l2,∴$\frac{3}{1}=\frac{-1}{m}≠\frac{2}{-3}$,
解得m=-$\frac{1}{3}$.
故答案为:-$\frac{1}{3}$.

点评 本题考查了平行线的充要条件,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若实数x,y满足$\left\{\begin{array}{l}3x-y-9≥0\\ x-y-3≤0\\ y≤3\end{array}\right.$,则使得z=y-2x取得最大值的最优解为(  )
A.(3,0)B.(3,3)C.(4,3)D.(6,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在正方体ABCD-A1B1C1D1中:
(Ⅰ)求证:AC∥平面A1BC1
(Ⅱ)求证:平面A1BC1⊥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在三棱锥P-ABC中,D为底面ABC的边AB上一点,M为底面ABC内一点,且满足$\overrightarrow{AD}=\frac{3}{4}\overrightarrow{AB}$,$\overrightarrow{AM}=\overrightarrow{AD}+\frac{3}{5}\overrightarrow{BC}$,则三棱锥P-AMD与三棱锥P-ABC的体积比 $\frac{{{V_{P-AMD}}}}{{{V_{P-ABC}}}}$为(  )
A.$\frac{9}{25}$B.$\frac{4}{5}$C.$\frac{9}{16}$D.$\frac{9}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是(  )
A.平行B.相交成60°C.相交且垂直D.异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知正方体ABCD-A1B1C1D1,E,F,G,H分别是AD1、CD1、BC、AB的中点.
(Ⅰ)求证:E,F,G,H四点共面;
(Ⅱ)求证:GH⊥B1D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=sin(ωx+φ),x∈R(其中ω>0,-π<φ<π)的部分图象,如图所示.那么f(x)的解析式为(  )
A.$f(x)=sin(x+\frac{π}{2})$B.$f(x)=sin(x-\frac{π}{2})$C.$f(x)=sin(2x+\frac{π}{2})$D.$f(x)=sin(2x-\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是一个组合体的三视图,根据图中数据,可得该几何体的表面积(接触面积忽略不计)是(  )
A.32πB.36πC.40πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若偶函数f(x)满足f(x+π)=f(x),且f(-$\frac{π}{3}$)=$\frac{1}{2}$,则f($\frac{2017π}{3}$)的值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案