精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=a x(a>0且a≠1)的图象经过点(2,$\frac{1}{9}$)
(1)求a的值
(2)比较f(2)与f(b2+2)的大小.

分析 (1)代值计算即可,(2)根据指数函数的单调性即可求出.

解答 解:(1)f(x)=ax(a>0且a≠1)的图象经过点(2,$\frac{1}{9}$),
∴a2=$\frac{1}{9}$,
∴a=$\frac{1}{3}$;
(2)∵f(x)=($\frac{1}{3}$)x在R上单调递减,
又2≤b2+2,
∴f(2)≥f(b2+2).

点评 本题考查了指数函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.直线的方程为$x-\sqrt{3}y+2016=0$,则直线的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,△ABC顶点的坐标为A(-1,2),B(1,4),C(3,2).
(1)求△ABC外接圆E的方程;
(2)若直线l经过点(0,4),且与圆E相交所得的弦长为2$\sqrt{3}$,求直线l的方程;
(3)在圆E上是否存在点P,满足PB2-2PA2=12,若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanα=$\frac{1}{2}$,求
(1)$\frac{sinα+2cosα}{2sinα-3cosα}$;
(2)sin2α+2sinαcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.双曲线与椭圆有共同的焦点F1(0,-5),F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求椭圆的方程和双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若关于x的方程x2+(m-3)x+m=0有两个不相等实数根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x2+2x-3>0},集合B={x|x2-2ax-1≤0,a>0}.
(Ⅰ)若a=1,求A∩B;
(Ⅱ)若A∩B中恰含有一个整数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a∈R,a>1,解不等式(a-1)x2-ax+1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若A={x|x2-5x+4<0},B={x|x-2≤0},则A∩B=(  )
A.(0,1)B.(0,2]C.(1,2)D.(1,2]

查看答案和解析>>

同步练习册答案