在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且.
(1)求证:EF∥平面BDC1;
(2)求证:平面.
证明见解析.
【解析】
试题分析:(1)要证线面平行,就是要在平面内找一条直线与直线平行,本题中容易看出就是要证明 ,而这个在四边形中只要取中点,可证明即得;(2)要证平面,根据线面垂直的判定定理,就是要证与平面内的两条相交直线垂直,观察已知条件,正三棱柱的侧面是正方形,因此有,下面还要找一条垂线,最好在,中找一条,在平面中,由平面几何知识易得,又由正三棱柱的性质可得平面,从而,因此有平面,即有,于是结论得证.
(1)证明:取的中点M,因为,所以为的中点,
又因为为的中点,所以, 2分
在正三棱柱中,分别为的中点,
所以,且,则四边形A1DBM为平行四边形,
所以,所以, 5分
又因为平面,平面,所以,平面 7分
(2)连接,因为在正三角中,为的中点,
所以,,所以,在正三棱柱ABC-A1B1C1中,面,
所以,,因为,所以,四边形为正方形,由分别为的中点,所以,可证得,
所以,面,即, 11分
又因为在正方形中,,所以面, 14分
考点:线面平行与线面垂直.
科目:高中数学 来源:2013-2014学年江苏省苏、锡、常、镇四市高三教学情况调查(一)理科数学试卷(解析版) 题型:填空题
在平面直角坐标系中,已知点在圆内,动直线过点且交圆于两点,若△ABC的面积的最大值为,则实数的取值范围为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省盐城市高三第三次模拟考试数学试卷(解析版) 题型:解答题
已知函数,为常数.
(1)若函数在处的切线与轴平行,求的值;
(2)当时,试比较与的大小;
(3)若函数有两个零点、,试证明.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省淮安市高三5月信息卷理科数学试卷(解析版) 题型:解答题
如图,A,B,C是⊙O上的三点,BE切⊙O于点B,D是与⊙O的交点.若,,求证:.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省淮安市高三5月信息卷理科数学试卷(解析版) 题型:填空题
在平面直角坐标系中,抛物线上纵坐标为2的一点到焦点的距离为3,则抛物线的焦点坐标为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省淮安市高三Ⅲ级部决战四统测二文科数学试卷(解析版) 题型:填空题
执行如图所示的程序框图,若输出的的值为31,则图中判断框内①处应填的整数为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com