精英家教网 > 高中数学 > 题目详情

已知:定义域为R的函数f(x)为奇函数,当x>0时,f(x)=x3+1;则x<0时,f(x)的解析式为


  1. A.
    f(x)=x3+1
  2. B.
    f(x)=x3-1
  3. C.
    f(x)=-x3+1
  4. D.
    f(x)=-x3-1
B
分析:设x<0,则-x>0,根据当x>0时,f(x)=x3+1,函数f(x)为奇函数,即可求得f(x)的解析式.
解答:设x<0,则-x>0
∵当x>0时,f(x)=x3+1
∴f(-x)=-x3+1
∵函数f(x)为奇函数,
∴f(x)=-f(-x)=x3-1
故选B.
点评:本题考查函数的解析式,考查函数的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

24、已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.03 0.21 0.20 -0.22 -0.03 0 -226.05
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3(x2-2mx+2m2+
9m2-3
)的定义域为R.
(1)求实数m的取值集合M;
(2)求证:对m∈M所确定的所有函数f(x)中,其函数值最小的一个是2,并求使函数值等于2的m的值和x的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.03 0.21 0.20 -0.22 -0.03 0 -226.05
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.

查看答案和解析>>

科目:高中数学 来源:2008年11月北京市北大附中高中高一(上)课改数学模块水平监测(必修1)(解析版) 题型:解答题

已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
x3.271.57-0.61-0.590.260.42-0.35-0.564.25
y-101.63-10.040.070.030.210.20-0.22-0.03-226.05
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.

查看答案和解析>>

同步练习册答案