【题目】已知函数,给出下列结论:
①在上是减函数;
②在上的最小值为;
③在上至少有两个零点.
其中正确结论的序号为_________(写出所有正确结论的序号)
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥中,,,,点在上,且.
(1)证明:面;
(2)在棱上是否存在一点,使三棱锥是正三棱锥?证明你的结论.
(3)求以为棱,与为面的二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线(其中)的焦点的直线交抛物线于两点,且两点的纵坐标之积为.
(1)求抛物线的方程;
(2)当时,求的值;
(3)对于轴上给定的点(其中),若过点和两点的直线交抛物线的准线点,求证:直线与轴交于一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆,直线,直线与椭圆交于不同的两点,点和点关于轴对称,直线与轴交于点.
(1)若点是椭圆的一个焦点,求该椭圆的长轴的长度;
(2)若,且,求的值;
(3)若,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每本单价(元)试销l天,得到如表单价(元)与销量(册)数据:
单价(元) | |||||
销量(册) |
(1)已知销量与单价具有线性相关关系,求关于的线性回归方程;
(2)若该书每本的成本为元,要使得售卖时利润最大,请利用所求的线性相关关系确定单价应该定为多少元?(结果保留到整数)
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com