精英家教网 > 高中数学 > 题目详情
求函数f(x)=4x+6在x=-1,x=5,x=a处的函数值.
考点:函数的值
专题:函数的性质及应用
分析:已知函数的解析式,代入相应的x的值,即可求出函数的值
解答: 解:∵f(x)=4x+6,
∴f(-1)=4×(-1)+6=2,
f(5)=4×5+6=26,
f(a)=4a+6.
点评:本题考查了函数的值得求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若两个二面角的面分别垂直且它们的棱互相平行,则它们的角度之间的关系为(  )
A、相等B、互补
C、相等或互补D、无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系xOy中,直线2x+y+2=0经过椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点且与椭圆M交于A,B两点,其中点A是椭圆的一个顶点,
(Ι)求椭圆M的方程;
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
tan100°-tan40°+tan120°
tan40°tan80°tan120°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为[0,1]上的函数f(x)=1-|1-2x|和g(x)=(x-1)2,且记min{x1、x2、x3…、xn}为x1、x2、x3…、xn中的最小值.
(1)求F(x)=min{f(x),g(x)}的函数解析式;
(2)求F(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥A-BCD中,面ACD与面BCD均为正三角形,点E,F,G,H分别为BD,BC,AC,AD中点
(1)证明:四边形EFGH为矩形;
(2)若二面角A-DC-B大小为60°,求直线EH与面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“在△ABC中,若∠C使直角,则∠B一定是锐角”,假设正确的是(  )
A、假设△ABC不是锐角三角形
B、假设∠B>90°
C、假设∠B≥90°
D、假设∠B=90°

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各式的值
(1)(0.064)- 
1
3
-(-
7
8
0+[(-2)5]- 
2
5
+(
1
16
0.75
(2)
1
2
lg32-
4
3
lg
8
+lg
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x2-4x-5|,g(x)=k
(1)画出函数f(x)的图象.
(2)若函数f(x)与g(x)有3个交点,求k的值.

查看答案和解析>>

同步练习册答案