精英家教网 > 高中数学 > 题目详情
14.设命题p:“?x>1,x2≥x,则其否定非p为(  )
A.?x>1,x2≤xB.$?{x}_{0}>1,{x}_{0}^{2}>{x}_{0}$
C.$?{x}_{0}≤1,{x}_{0}^{2}≤{x}_{0}$D.$?{x}_{0}>1,{x}_{0}^{2}<{x}_{0}$

分析 利用全称命题的否定是特称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以,命题p:“?x>1,x2≥x,则其否定非p为:$?{x}_{0}>1,{x}_{0}^{2}<{x}_{0}$.
故选:D.

点评 本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列函数中,在区间[0,2]上是增函数的是(  )
A.y=x2-4x+5B.y=log${\;}_{\frac{1}{2}}$xC.y=2-xD.y=$\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2x取极小值时,x的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆:$\frac{x^2}{9}+\frac{y^2}{4}=1$,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B 两点,则|$\overrightarrow{B{F}_{2}}$|+|$\overrightarrow{A{F}_{2}}$|的最大值为$\frac{28}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:
(1)$\frac{1}{\sqrt{0.04}}$+($\frac{1}{\sqrt{27}}$)${\;}^{\frac{1}{3}}$+($\sqrt{2}$+1)-1-2${\;}^{\frac{1}{2}}$+(-2)0
(2)$\frac{2}{5}$lg32+lg50+$\sqrt{(lg3)^{2}-lg9+1}$-lg$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的部分图象如图,且过点$A(\frac{7π}{12},0),B(0,-1)$,则以下结论不正确的是(  )
A.f(x)的图象关于直线$x=-\frac{π}{6}$ 对称B.f(x)的图象关于点$(\frac{π}{12},0)$对称
C.f(x) 在$[-\frac{π}{2},-\frac{π}{3}]$ 上是增函数D.f(x) 在$[\frac{4π}{3},\frac{3π}{2}]$ 上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某基建公司年初以100万元购进一辆挖掘机,以每年22万元的价格出租给工程队.基建公司负责挖掘机的维护,第一年维护费为2万元,随着机器磨损,以后每年的维护费比上一年多2万元,同时该机器第x(x∈N*,x≤16)年末可以以(80-5x)万元的价格出售.
(1)写出基建公司到第x年末所得总利润y(万元)关于x(年)的函数解析式,并求其最大值;
(2)为使经济效益最大化,即年平均利润最大,基建公司应在第几年末出售挖掘机?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.证明:f(x)=($\frac{1}{2}$x2+x)lnx-$\frac{1}{3}$x3-$\frac{1}{4}$x2在(0,+∞)是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在三棱锥A-BCD中,E,F,G分别是AB,AC,BD的中点,若AD与BC所成的角是60°,那么∠FEG为(  )
A.60°B.30°C.120°D.60°或120°

查看答案和解析>>

同步练习册答案