精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1),证明:当

(2),若函数上有2个不同的零点,求实数的取值范围.

【答案】(1)见解析;(2)

【解析】

(1)a=1时.. 明确单调性求出最大值即可;(2)讨论a的范围,易知当时,没有零;当时,研究函数的单调性,明确图象与x轴的交点情况即可.

(1)当a=1时..

.

因为,所以

所以时单调递减,

所以,即.

(2)法一

(i)当时,没有零

(ii)当时,

时,;当时,.

所以上单调递减,在上单调递增.

上的最小值

①若,即时,上没有零点

②若,即时,上只有1个零点

③若,即时,由于,所以在(0,2)上有1个零点,

由(1)知,当时,

因为

所以.

在(2,4a)上有1个零点,因此上有2个不同的零点。

综上,上有2个不同的零点时,a的取值范围是.

法二:因为

所以上零点的个数即为方程上根的个数。

.

x=2.

时,,当时,

所以当时,单调递增,

时,单调递减,

所以上的最大值为

由(1)知,当时,

即当时,

因为当x无限增大时,→0,所以当x无限增大时,→0,

又因为,所以当且仅当时,

函数上的图象与直线恰好有2个不同的交点,

即当且仅当a>一时,函数h(x)在(0,+oo)上有2个不同的零点,

上有2个不同的零点时,a的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.

组号

分组

频数

频率

第1组

5

第2组

第3组

30

第4组

20

第5组

10

(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;

(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下的对应数据:

x

2

4

5

6

8

y

30

40

60

50

70

1)画出散点图;

2)求y关于x的线性回归方程.

3)如果广告费支出为一千万元,预测销售额大约为多少百万元?

参考公式用最小二乘法求线性回归方程系数公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对下列命题:

①直线与函数的图象相交,则相邻两交点的距离为

②点 是函数的图象的一个对称中心;

③函数上单调递减,则的取值范围为

④函数R恒成立,则.

其中所有正确命题的序号为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数对定义域内的每一个值,在其定义域内都存在唯一的,使成立,则该函数为“依附函数”.

(1)判断函数是否为“依附函数”,并说明理由;

(2)若函数在定义域上“依附函数”,求的取值范围;

(3)已知函数在定义域上为“依附函数”.若存在实数,使得对任意的,不等式都成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处有相同的切线,求函数的极值;

2)若,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点是椭圆 )的顶点,且椭圆与双曲线的离心率互为倒数.

(Ⅰ)求椭圆的方程;

(Ⅱ)设动点 在椭圆上,且,记直线轴上的截距为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxk>0)

(1)若fx)>m的解集为{x|x<-3,或x>-2},求不等式5mx2+kx+3>0的解集;

(2)若存在x>3,使得fx)>1成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】推进垃圾分类处理,是落实绿色发展理念的必然选择,也是打赢污染防治攻坚战的重要环节.为了解居民对垃圾分类的了解程度某社区居委会随机抽取1000名社区居民参与问卷测试,并将问卷得分绘制频率分布表如表:

得分

[3040

[4050

[5060

[6070

[7080

[8090

[90100]

男性人数

40

90

120

130

110

60

30

女性人数

20

50

80

110

100

40

20

1)从该社区随机抽取一名居民参与问卷测试试估计其得分不低于60分的概率:

2)将居民对垃圾分类的了解程度分为“比较了解”(得分不低于60分)和“不太了解”(得分低于60)两类,完成2×2列联表,并判断是否有95%的把握认为“居民对垃圾分类的了解程度”与“性别”有关?

不太了解

比较了解

合计

男性

女性

合计

3)从参与问卷测试且得分不低于80分的居民中,按照性别进行分层抽样,共抽取10人,现从这10人中随机抽取3人作为环保宣传队长,设3人中男性队长的人数为,求的分布列和期望.

附:

临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

同步练习册答案