精英家教网 > 高中数学 > 题目详情

如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC.

(1)证明:平面ACD平面
(2)若,试求该简单组合体的体积V.

(1)详见解析;(2)该简单几何体的体积

解析试题分析:(1)欲证平面⊥平面,证明面面垂直,先证线面垂直,即证一个平面过另一个平面的垂线,本题根据面面垂直的判定定理可知在平面内找一条直线与平面垂直,而由已知平面,可得平面,从而可得平面⊥平面;(2)所求简单组合体的体积进行分解:,然后利用体积公式进行求解,关键是几何体的高的求解.
试题解析:(1)证明:∵ DC平面ABC ,平面ABC  
.    .1分
∵AB是圆O的直径 ∴ 
平面ADC.       3分
∵四边形DCBE为平行四边形    ∴DE//BC 
平面ADC        5分
又∵平面ADE  ∴平面ACD平面   ..6分
(2)所求简单组合体的体积: 

,     10分


∴该简单几何体的体积       12分
考点:平面与平面垂直的判定;棱柱、棱锥、棱台的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(2014·贵阳模拟)一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A,B,C在圆O的圆周上,其正(主)视图,侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.

(1)求证:AC⊥BD.
(2)求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,D、E分别是AB、BB1的中点.
 
(1)证明:BC1//平面A1CD;
(2)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形中,.把沿折起到的位置,使得点在平面上的正投影恰好落在线段上,如图2所示,点分别为棱的中点.

(1)求证:平面平面
(2)求证:平面
(3)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧棱底面, 的中点,.

(1)求证:平面
(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,是边长为6的等边三角形,分别为靠近的三等分点,点为边边的中点,线段交线段于点.将沿翻折,使平面平面,连接,形成如图乙所示的几何体.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,⊙O的直径AB=2,圆上两点CD在直径AB的两侧,且∠CAB,∠DAB.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),FBC的中点,EAO的中点.根据图乙解答下列各题:
 
(1)求三棱锥CBOD的体积;
(2)求证:CBDE
(3)在上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABCA1B1C1中,CACBABAA1,∠BAA1=60°.

(1)证明:ABA1C
(2)若ABCB=2,A1C,求三棱柱ABCA1B1C1的体积;
(3)若平面ABC⊥平面AA1B1BABCB=2,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,底面边长为a,高为h的正三棱柱ABC-A1B1C1,其中D是AB的中点,E是BC的三等分点.求几何体BDEA1B1C1的体积.

查看答案和解析>>

同步练习册答案