精英家教网 > 高中数学 > 题目详情
已知正方体ABCD-A1B1C1D1.求证:
(1)面C1BD∥面AB1D1
(2 )A1C⊥平面AB1D1
考点:平面与平面平行的判定,直线与平面垂直的判定
专题:证明题,空间位置关系与距离
分析:(1)由已知得AB1∥DC1,AD1∥BC1,由此能证明平面AB1D1∥平面C1BD.
(2)由已知得CC1⊥B1D1,A1C⊥B1D1,A1C⊥AB1,由此能证明A1C⊥面AB1D1
解答: 证明:(1)∵ABCD-A1B1C1D1是正方体,
∴AB1∥DC1,AD1∥BC1
又AB1∩AD1=A,AB1∥DC1
AD1?平面AB1D1,AB1?平面AB1D1
∴平面AB1D1∥平面C1BD.
(2)∵CC1⊥面A1B1C1D1,∴CC1⊥B1D1
又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C即A1C⊥B1D1
同理可证A1C⊥AB1
又D1B1∩AB1=B1,∴A1C⊥面AB1D1
点评:本题考查直线直线垂直的证明,考查平面与平面平行的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
1
2
(ax2-ax+
1
a
)的定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=1,∠BAC=120°,异面直线B1C与AA1成60°角,D,E分别是BC,AB1的中点.
(1)求证:DE∥平面AA1C1C.
(2)求三棱锥B1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

两个人射击,甲射击一次中靶概率是p1,乙射击一次中靶概率是p2,已知,p1,p2是方程 3x2-x=0的根,若两人各射击5次,甲的方差是
5
4

(Ⅰ)求 p1,p2的值;
(Ⅱ)两人各射击2次,中靶至少3次就算完成目的,则完成目的概率是多少?
(Ⅲ)甲、乙两人轮流射击,各射击3次,中靶一次就终止射击,求终止射击时两人射击的次数之和ξ的期望?

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是R上的偶函数,且当x≥0时,f(x)=2x-2x
1
2
;函数g(x)=ln(x+1)-
2
x
.则:
(1)函数g(x)的零点个数为
 

(2)若实数a是函数g(x)的正零点,则f(-2)与f(a)的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别是F1和F2,离心率e=
2
2
,且a2=2c.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆相交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=
2
,AD=1,点E是棱PB的中点.
(1)证明:PD∥平面EAC;
(2)证明:平面ADE⊥平面PBC.
(3)求二面角B-EC-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-px+q,其中p>0,q>0.
(1)当p>q时,证明
f(q)
p
f(p)
q

(2)若f(x)=0在区间,(0,1],(1,2]内各有一个根,求p+q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数是增函数的是(  )
A、y=tanx(x∈(0,
π
2
)∪(
π
2
,π))
B、y=x 
1
3
C、y=cosx(x∈(0,π))
D、y=2-x

查看答案和解析>>

同步练习册答案