【题目】已知函数 。
(1)若曲线与在点处的切线互相垂直,求 值;
(2)讨论函数的零点个数。
【答案】(1);(2)见解析
【解析】试题分析:(1)根据题意,求得,由,即可求得的值;
(2)由题意,令,分、和三种情形分讨论,得到函数的单调性和极值,即可判断函数的零点的个数
试题解析:
(1),
由题意,解得.
(2),令,
①当时,在定义域上恒大于没有零点;
②当时,在上恒成立,所以在定义域上为增函数,
因为,所以有1个零点;
③当时,
因为当时,在上为减函数,
当时,在上为增函数,
所以时,没有零点;
当时,有1个零点,
当时,,
因为且,所以方程在区间上有一解,
因为当时,,所以,
所以,
因为,所以,
所以在上有一解,所以方程在区间上有两解,
综上所述,当时,函数没有零点,
当或时,函数有1个零点,
当时,函数有2个零点.
科目:高中数学 来源: 题型:
【题目】已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分别满足下列条件的a,b的值.
(1)直线l1过点(-3,-1),并且直线l1与l2垂直;
(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知圆的圆心为,半径为.以极点为原点,极轴方向为轴正半轴方向,利用相同单位长度建立平面直角坐标系,直线的参数方程为(为参数,且).
(Ⅰ)写出圆的极坐标方程和直线的普通方程;
(Ⅱ)若直线与圆交于、两点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,平面,底面是以为斜边的等腰直角三角形,,是线段上一点.
(1)若为的中点,求直线与平面所成角的正弦值.
(2)是否存在点,使得平面平面?若存在,请指出点的位置,并加以证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O:,直线l:.
若直线l与圆O交于不同的两点A、B,当为锐角时,求k的取值范围;
若,P是直线l上的动点,过P作圆O的两条切线PC、PD,切点为C、D,则直线CD是否过定点?若是,求出定点,并说明理由.
若EF、GH为圆O的两条相互垂直的弦,垂足为,求四边形EGFH的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系. 已知曲线的极坐标方程为 ,直线 的参数方程为 (为参数).
(I)分别求曲线的直角坐标方程和直线 的普通方程;
(II)设曲线和直线相交于两点,求弦长的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】故宫博物院五一期间同时举办“戏曲文化展”、“明代御窖瓷器展”、“历代青绿山水画展”、 “赵孟頫书画展”四个展览.某同学决定在五一当天的上、下午各参观其中的一个,且至少参观一个画展,则不同的参观方案共有
A. 6种 B. 8种 C. 10种 D. 12种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.直线过点.
(1)若直线与曲线交于两点,求的值;
(2)求曲线的内接矩形的周长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com