精英家教网 > 高中数学 > 题目详情

【题目】1)若关于x的不等式ax23x+20aR)的解集为{x|x1xb},求ab的值;

2)解关于x的不等式ax23x+25axaR).

【答案】(1) ;(2) ,解集为;,解集为;,解集为;,解集为

【解析】

(1) 利用三个二次关系可知的根为,代入可求得值,进而解不等式可得到边界值;

(2)将不等式变形,求得与不等式对应的方程的根,结合相应的函数图像可得到不等式的解集,求解时注意分两种情况讨论

(1) 不等式的解集为1,

所以是一元二次方程的两个实数根,

,解得

.

(2)等式化为,.

,化为解得,其解集为,

,解得,其解集为

, ,解得,其解集为

,解集为.

综上所述当,解集为;,解集为;,解集为;,解集为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为调查人们在购物时的支付习惯,某超市对随机抽取的600名顾客的支付方式进行了统计,数据如下表所示:

支付方式

微信

支付宝

购物卡

现金

人数

200

150

150

100

现有甲、乙、丙三人将进入该超市购物,各人支付方式相互独立,假设以频率近似代替概率.

(1)求三人中使用微信支付的人数多于现金支付人数的概率;

(2)记为三人中使用支付宝支付的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小赵和小王约定在早上之间到某公交站搭乘公交车去上学,已知在这段时间内,共有班公交车到达该站,到站的时间分别为,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.口袋中有质地、大小完全相同的5个球,编号分别为12345,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.

)求甲赢且编号的和为6的事件发生的概率;

)这种游戏规则公平吗?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱台中, 侧面与侧面是全等的梯形,若,且.

(Ⅰ)若 ,证明: ∥平面

(Ⅱ)若二面角,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为实数.

1)若函数为定义域上的单调函数,求的取值范围.

2)若,满足不等式成立的正整数解有且仅有一个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCDA1B1C1D1是长方体,OB1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是( )

A.AMO三点共线B.AMOA1不共面

C.AMCO不共面D.BB1OM共面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图象过点

(1)求的值并求函数的值域;

(2)若关于的方程有实根,求实数的取值范围;

(3)若函数 ,则是否存在实数,使得函数的最大值为0?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体EF﹣ABCD中,四边形ABCD是菱形,AB=4,BAD=60°,AC,BD相交于O,EFAC,点E在平面ABCD上的射影恰好是线段AO的中点.

Ⅰ)求证:BD⊥平面ACF;

Ⅱ)若直线AE与平面ABCD所成的角为45°,求平面DEF与平面ABCD所成角(锐角)的余弦值.

查看答案和解析>>

同步练习册答案