【题目】已知函数f(x)=ex﹣1﹣x﹣ax2 . (Ⅰ)当a=0时,求证:f(x)≥0;
(Ⅱ)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围;
(Ⅲ)若x>0,证明(ex﹣1)ln(x+1)>x2 .
【答案】解:(Ⅰ)a=0时,f(x)=ex﹣1﹣x, f′(x)=ex﹣1
当x∈(﹣∞,0)时,f'(x)<0;
当x∈(0,+∞)时,f'(x)>0
故在单调递减,在单调递增,
f(x)min=f(0)=0,∴f(x)≥0
(Ⅱ)f'(x)=ex﹣1﹣2ax,令h(x)=ex﹣1﹣2ax,则h'(x)=ex﹣2a.
1)当2a≤1时,在[0,+∞)上,h'(x)≥0,h(x)递增,h(x)≥h(0),
即f'(x)≥f'(0)=0,∴f(x)在[0,+∞)为增函数,
∴f(x)≥f(0)=0,∴ 时满足条件;
2)当2a>1时,令h'(x)=0,解得x=ln2a,
当x∈[0,ln2a)上,h'(x)<0,h(x)单调递减,
∴x∈(0,ln2a)时,有h(x)<h(0)=0,即f'(x)<f'(0)=0,
∴f(x)在区间(0,ln2a)为减函数,
∴f(x)<f(0)=0,不合题意
综上得实数a的取值范围为
(Ⅲ)由(Ⅱ)得,当a= 时,x>0,ex>1+x+ ,即ex﹣1>x+ ,
欲证不等式(ex﹣1)ln(x+1)>x2 , 只需证ln(x+1)>
设F(x)=ln(x+1)﹣ ,则F′(x)= ,
∵x>0时,F′(x)>0恒成立,且F(0)=0,
∴F(x)>0恒成立.
所以原不等式得证
【解析】(Ⅰ)求出函数的导数,解关于x的不等式,求出函数的单调区间,得到函数的最小值,证出结论即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,根据
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】某校有高中生1470人,现采用系统抽样法抽取49人作问卷调查,将高一、高二、高三学生(高一、高二、高三分别有学生495人、493人、482人)按1,2,3,…,1470编号,若第一组用简单随机抽样的方法抽取的号码为23,则所抽样本中高二学生的人数为
A. 15B. 16C. 17D. 18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资类产品的收益与投资额成正比,投资类产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.
(1)分别写出两类产品的收益与投资额的函数关系;
(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生喜欢校内、校外开展活动的情况,某中学一课外活动小组在学校高一年级进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按,,,,分成五组,绘制的频率分布直方图如图所示,若将不低于60分的称为类学生,低于60分的称为类学生.
(1)根据已知条件完成下面列联表,能否在犯错误的概率不超过的前提下认为性别与是否为类学生有关系?
类 | 类 | 合计 | |
男 | 110 | ||
女 | 50 | ||
合计 |
(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中类学生的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.
参考公式:,其中.
参考临界值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产甲、乙两种产品所得利润分别为和(万元),它们与投入资金(万元)的关系有如下公式:,,今将200万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于25万元.
(Ⅰ)设对乙种产品投入资金(万元),求总利润(万元)关于的函数关系式及其定义域;
(Ⅱ)如何分配投入资金,才能使总利润最大,并求出最大总利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
满足:或1(k=1,2,…,n-1).
对任意i,j,都存在s,t,使得,其中i,j,s,t∈{1,2,…,n}且两两不相等.
(I)若m=2,写出下列三个数列中所有符合题目条件的数列的序号;
①1,1,1,2,2,2; ②1,1,1,1,2,2,2,2; ③1,1,1,1,1,2,2,2,2
(II)记.若m=3,求S的最小值;
(III)若m=2018,求n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知变量之间的线性回归方程为,且变量之间的一组相关数据如表所示,则下列说法错误的是( )
x | 6 | 8 | 10 | 12 |
y | 6 | m | 3 | 2 |
A. 变量之间呈现负相关关系
B. 的值等于5
C. 变量之间的相关系数
D. 由表格数据知,该回归直线必过点(9,4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com