精英家教网 > 高中数学 > 题目详情
已知函数f(x)是R上的偶函数,它在[0,+∞)上是减函数,若f(lnx)>f(1),则x的取值范围是(  )
分析:当lnx>0时,因为f(x)在区间[0,+∞)上是减函数,所以f(lnx)>f(1)等价于lnx<1; 当lnx<0时,-lnx>0,结合函数f(x)是定义在R上的偶函数,得f(lnx)>f(1)等价于f(-lnx)>f(1).x=1时,lnx=0,f(lnx)>f(1)成立.由此能求出x的取值范围.
解答:解:∵函数f(x)是R上的偶函数,
在[0,+∞)上是减函数,f(lnx)>f(1),
∴当lnx>0时,因为f(x)在区间[0,+∞)上是减函数,
所以f(lnx)>f(1)等价于lnx<1,解得1<x<e;
当lnx<0时,-lnx>0,结合函数f(x)是定义在R上的偶函数,
得f(lnx)>f(1)等价于f(-lnx)>f(1),
由函数f(x)在区间[0,+∞)上是减函数,得到-lnx<1,即lnx>-1,
解得e-1<x<1.
当x=1时,lnx=0,f(lnx)>f(1)成立.
综上所述,e-1<x<e.
∴x的取值范围是:(e-1,e).
故选C.
点评:本题在已知抽象函数的单调性和奇偶性的前提下,求解关于x的不等式,着重考查了函数的奇偶性与单调性等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是R上的增函数,A(0,-1),B(3,1)是其图象上的两点,那么|f(x+1)|<1的解集的补集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,f(x)在区间[0,3]上是增函数,则f(x)在[-9,9]上零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的减函数,A(0,-2),B(-3,2)是其图象上的两点,那么不等式|f(x-2)|>2的解集是
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的奇函数,且f(1)=1,那么f(-1)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的偶函数.
(1)证明:f(x)=f(|x|)
(2)若当x≥0时,f(x)是单调函数,求满足f(x)=f(
x+3x+4
)
的所有x之和.

查看答案和解析>>

同步练习册答案