精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\frac{1}{2}$ax2+lnx,a∈R.
(Ⅰ)若曲线y=f(x)与直线y=3x+b在x=1处相切,求实数a,b的值;
(Ⅱ)求函数y=f(x)的单调区间;
(Ⅲ)若a=0时,函数h(x)=f(x)+bx有两个不同的零点,求实数b的取值范围.

分析 (Ⅰ)根据导数的几何意义即可求出k,b的值,
(Ⅱ)先求导,再分类讨论,根据导数和函数的单调性关系即可求出.
(Ⅲ)当a=0时,若函数h(x)有两个不同的零点,利用数形结合即可求b的取值范围;

解答 解:(Ⅰ)∵函数f(x)=$\frac{1}{2}$ax2+lnx,x>0,
∴f′(x)=ax+$\frac{1}{x}$,
∵曲线y=f(x)与直线y=3x+b在x=1处相切,
∴f′(1)=a+1=3,
∴a=2,
∴f(1)=1+ln1=1,
∴1=3+b,
∴b=-2,
(Ⅱ)由(1)可得f′(x)=ax+$\frac{1}{x}$,
当a≥0时,f′(x)=ax+$\frac{1}{x}$>0恒成立,
∴f(x)在(0,+∞)上单调递增,
当a<0时,令f′(x)=0,解得x=$\sqrt{\frac{1}{-a}}$=$\frac{\sqrt{-a}}{-a}$,
当x∈(0,$\frac{\sqrt{-a}}{-a}$)时,f′(x)>0,函数单调递增,
当x∈($\frac{\sqrt{-a}}{-a}$,+∞)时,f′(x)<0,函数单调递减,
(Ⅲ)a=0时,函数h(x)=f(x)+bx=lnx+bx
令m(x)=lnx,n(x)=-bx,
要使得h(x)有两个零点,即使得m(x)和n(x)图象有两个交点(如图),
容易求得m(x)和n(x)的切点为(e,1),
∴0<-b<$\frac{1}{e}$,即-$\frac{1}{e}$<b<0.

点评 本题主要考查函数单调性和导数之间的关系,考查考生的应用,运算量大,综合性较强,属于难题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4. 如图,点M($\sqrt{3}$,$\sqrt{2}$)在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,且点M到两焦点的距离之和为6.
(1)求椭圆的方程;
(2)设MO(O为坐标原点)处置的直线交椭圆于A,B(A,B不重合),求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{an},则此数列的项数为134.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|2x-6≤2-2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.
(Ⅰ)写出集合B的所有子集;
(Ⅱ)若A∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=2sin(ωx+$\frac{π}{6}$)的图象与x轴交点的横坐标,依次构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,则(  )
A.g(x)是奇函数B.g(x)的图象关于直线x=-$\frac{π}{4}$对称
C.g(x)在[$\frac{π}{4}$,$\frac{π}{2}$]上的增函数D.当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时,g(x)的值域是[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知半径为$\sqrt{2}$的圆C,其圆心在射线y=-2x(x<0)上,且与直线x+y+1=0相切.
(1)求圆C的方程;
(2)从圆C外一点P(x0,y0))向圆引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求△PMC面积的最小值,并求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在长方体ABCD-A1B1C1D1中,AB=$\sqrt{3}$,AA1=2,AD=1,E、F分别是AA1和BB1的中点,G是DB上的点,且DG=2GB.
(Ⅰ)求三棱锥B1-EBC的体积;
(Ⅱ)作出长方体ABCD-A1B1C1D1被平面EB1C所截的截面(只要作出,说明结果即可);
(Ⅲ)求证:GF∥平面EB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是某几何体的三视图,其正视图、俯视图均为直径为2的半圆,则该几何体的表面积为(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=a|x-1|+|x-a|(a>0).
(1)当a=2时,解不等式f(x)≤4;
(2)若f(x)≥1,求a的取值范围.

查看答案和解析>>

同步练习册答案