精英家教网 > 高中数学 > 题目详情

【题目】为了测量某塔的高度,某人在一条水平公路两点进行测量.在点测得塔底在南偏西,塔顶仰角为,此人沿着南偏东方向前进10米到点,测得塔顶的仰角为,则塔的高度为( )

A. 5米B. 10米C. 15米D. 20米

【答案】B

【解析】

设出塔高为h,画出几何图形,根据直角三角形的边角关系和余弦定理,即可求出h的值.

如图所示:

设塔高为ABh

RtABC中,∠ACB45°,

BCABh

RtABD中,∠ADB30°,则BDh

在△BCD中,∠BCD120°,CD10

由余弦定理得:BD2BC2+CD22BCCDcosBCD

即(h2h2+1022h×10×cos120°,

h25h500,解得h10h=﹣5(舍去);

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,以O为圆心的圆与直线相切.

(1)求圆O的方程.

(2)直线与圆O交于AB两点,在圆O上是否存在一点M,使得四边形为菱形?若存在,求出此时直线l的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)若在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

1求函数的单调区间;

2)若,成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,平面,分别是线段的中点,.

(1)证明:平面

(2)设点是线段的中点,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)在圆内直径所对的圆周角是直角.此定理在椭圆内(以焦点在轴上的标准形式为例)可表述为“过椭圆的中心的直线交椭圆于两点,点是椭圆上异于的任意一点,当直线斜率存在时,它们之积为定值.”试求此定值;

(2)在圆内垂直于弦的直径平分弦.类比(1)将此定理推广至椭圆,不要求证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列的前三项和为6,且成等比数列

1)求数列的通项公式;

2)设,数列的前项和为,求使的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为2的正方体ABCD-A1B1C1D1中,EBC的中点,FDD1的中点,

1)求证:CF∥平面A1DE

2)求平面A1DE与平面A1DA夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列事件是随机事件的是(  )

x>10时,xRx2+x0有解

aR关于x的方程x2+a0在实数集内有解;sinα>sinβ时,α>β

A.①②B.②③C.③④D.①④

查看答案和解析>>

同步练习册答案